Investigation of the physicochemical and thermodynamic characteristics of imidazole ionic liquids with water and ethanol mixtures

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Fluid Phase Equilibria Pub Date : 2024-10-28 DOI:10.1016/j.fluid.2024.114275
Binqi Wang , Hongshuai Gao , Yuxing Wu , Huizheng Wu , Tiancheng Li , Xue Liu , Yi Nie
{"title":"Investigation of the physicochemical and thermodynamic characteristics of imidazole ionic liquids with water and ethanol mixtures","authors":"Binqi Wang ,&nbsp;Hongshuai Gao ,&nbsp;Yuxing Wu ,&nbsp;Huizheng Wu ,&nbsp;Tiancheng Li ,&nbsp;Xue Liu ,&nbsp;Yi Nie","doi":"10.1016/j.fluid.2024.114275","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of ionic liquids (ILs) as solvents in the preparation of regenerated cellulose fibers (RCFs) has garnered considerable research attention. The physicochemical properties of the ILs mixtures with coagulants significantly impact the morphology and characteristics of RCFs. This study determines the density and viscosity of 1-ethyl-3- methylimidazolium diethylphosphate ([Emim][DEP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim][DMP]), and 1‑butyl‑3-methylimidazolium dimethylphosphate ([Bmim][DMP]) in mixtures with water and ethanol. The thermodynamic data such as excess molar volumes, viscosity deviation, and excess Gibbs energy of activation for viscous flow, were also calculated and analyzed. The density and viscosity of [Bmim][DMP] is 1.1579 g·cm<sup>−3</sup> and 367.97 mPa·s at 303 K, and the order of the interaction between different ILs and coagulants was obtained. In the meantime, the water activity of the ILs-water mixtures was also tested, and the constant pressure boiling point of ILs with water and ethanol mixtures was measured. Furthermore, the polar action parameters of ILs were determined by Reichardt's dye. The experimental results obtained have mutually confirmed each other. The investigation of the interaction between ILs and coagulants furnishes foundational data and theoretical support for the controlled formation of RCFs prepared using ILs as solvents.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114275"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002504","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of ionic liquids (ILs) as solvents in the preparation of regenerated cellulose fibers (RCFs) has garnered considerable research attention. The physicochemical properties of the ILs mixtures with coagulants significantly impact the morphology and characteristics of RCFs. This study determines the density and viscosity of 1-ethyl-3- methylimidazolium diethylphosphate ([Emim][DEP]), 1-ethyl-3-methylimidazolium dimethylphosphate ([Emim][DMP]), and 1‑butyl‑3-methylimidazolium dimethylphosphate ([Bmim][DMP]) in mixtures with water and ethanol. The thermodynamic data such as excess molar volumes, viscosity deviation, and excess Gibbs energy of activation for viscous flow, were also calculated and analyzed. The density and viscosity of [Bmim][DMP] is 1.1579 g·cm−3 and 367.97 mPa·s at 303 K, and the order of the interaction between different ILs and coagulants was obtained. In the meantime, the water activity of the ILs-water mixtures was also tested, and the constant pressure boiling point of ILs with water and ethanol mixtures was measured. Furthermore, the polar action parameters of ILs were determined by Reichardt's dye. The experimental results obtained have mutually confirmed each other. The investigation of the interaction between ILs and coagulants furnishes foundational data and theoretical support for the controlled formation of RCFs prepared using ILs as solvents.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
咪唑离子液体与水和乙醇混合物的物理化学和热力学特性研究
利用离子液体(ILs)作为溶剂制备再生纤维素纤维(RCFs)的研究备受关注。离子液体与凝固剂混合物的理化性质对再生纤维素纤维的形态和特性有重大影响。本研究测定了 1-乙基-3-甲基咪唑二乙基磷酸盐([Emim][DEP])、1-乙基-3-甲基咪唑二甲基磷酸盐([Emim][DMP])和 1-丁基-3-甲基咪唑二甲基磷酸盐([Bmim][DMP])与水和乙醇的混合物的密度和粘度。此外,还计算和分析了过量摩尔体积、粘度偏差和粘流活化过量吉布斯能等热力学数据。在 303 K 时,[Bmim][DMP] 的密度和粘度分别为 1.1579 g-cm-3 和 367.97 mPa-s,并得出了不同 IL 与凝固剂之间相互作用的顺序。同时,还测试了 ILs 与水混合物的水活性,并测量了 ILs 与水和乙醇混合物的恒压沸点。此外,还利用赖哈特染料测定了 ILs 的极性作用参数。实验结果相互印证。ILs 与混凝剂之间相互作用的研究为以 ILs 为溶剂制备 RCFs 的可控形成提供了基础数据和理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
期刊最新文献
Prediction of melting and solid phase transitions temperatures and enthalpies for triacylglycerols using artificial neural networks The influence of pure compounds’ parameters on the phase behaviour of carbon dioxide + 1-hexanol binary system Experimental data and thermodynamic modeling for n-propane + Brazil nut oil at high pressures Development of a new parameterization strategy and GC parameters of halogenated hydrocarbons for PC-SAFT equation of state Phase equilibrium calculations with specified vapor fraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1