{"title":"Single start end tool path generation for arbitrary porous surfaces","authors":"Li-Yong Shen, Bowen Lyu, Hong-Yu Ma, Shuo-Peng Chen","doi":"10.1016/j.jmapro.2024.10.050","DOIUrl":null,"url":null,"abstract":"<div><div>The CNC machining of non-zero genus surfaces in B-rep models has become a prevalent challenge in modern manufacturing. The computational complexity inherent in generating tool paths for such geometries remains a significant hurdle. In this study, an efficient path planning algorithm tailored for porous structures of this nature is presented. Initially, we create a parametric grid using the adaptive iso-scallop height method and subsequently utilize a marching cells algorithm to construct a cell grid capable of preserving arbitrary boundaries. Based on the graph structure naturally induced by marching cells, we employ a designated weighting method to establish a minimum spanning tree, upon which a path with a singular start and end point is generated. We conduct various experiments on examples from industrial scenarios as well as synthetic examples. The results show the superior performance and effectiveness of our method concerning scallop height limits, sharp turns, and structural stability.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 249-260"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524010958","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The CNC machining of non-zero genus surfaces in B-rep models has become a prevalent challenge in modern manufacturing. The computational complexity inherent in generating tool paths for such geometries remains a significant hurdle. In this study, an efficient path planning algorithm tailored for porous structures of this nature is presented. Initially, we create a parametric grid using the adaptive iso-scallop height method and subsequently utilize a marching cells algorithm to construct a cell grid capable of preserving arbitrary boundaries. Based on the graph structure naturally induced by marching cells, we employ a designated weighting method to establish a minimum spanning tree, upon which a path with a singular start and end point is generated. We conduct various experiments on examples from industrial scenarios as well as synthetic examples. The results show the superior performance and effectiveness of our method concerning scallop height limits, sharp turns, and structural stability.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.