Offline iteration-based real-time hybrid simulation for high-fidelity fluid-structure dynamic interaction in structures subjected to seismic excitation

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Structures Pub Date : 2024-11-04 DOI:10.1016/j.compstruc.2024.107579
{"title":"Offline iteration-based real-time hybrid simulation for high-fidelity fluid-structure dynamic interaction in structures subjected to seismic excitation","authors":"","doi":"10.1016/j.compstruc.2024.107579","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an offline iteration-based real-time hybrid simulation (OI-RTHS) method, a novel approach for simulating fluid–structure dynamic interaction (FSDI) under seismic excitation. With this method, hydrodynamic forces are treated as a physical substructure, while numerical computation and servo loading are performed independently throughout the entire duration of the seismic event. By iteratively correcting the input command signals and obtaining the output response signals during each iteration process, they can eventually achieve balanced coordination at the boundaries. This characteristic introduces real hydrodynamic data to address the limitations of purely numerical theoretical analysis, ensuring high fidelity. Additionally, it reduces the need for real-time communication between numerical computation and servo loading, thereby reducing hardware and software requirements. In this study, experimental verification of the proposed method is conducted, and the results illustrate that the method can address the convergence issue of dynamic response for FSDI of structures in the water after a finite number of iterations. Moreover, regarding the hydrodynamic force as a physical substructure helps prevent errors arising from repeated loading processes, enabling the benefits of the OI-RTHS method. This study offers potential insights for the research on the FSDI of structures, also other environmental loadings.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003080","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an offline iteration-based real-time hybrid simulation (OI-RTHS) method, a novel approach for simulating fluid–structure dynamic interaction (FSDI) under seismic excitation. With this method, hydrodynamic forces are treated as a physical substructure, while numerical computation and servo loading are performed independently throughout the entire duration of the seismic event. By iteratively correcting the input command signals and obtaining the output response signals during each iteration process, they can eventually achieve balanced coordination at the boundaries. This characteristic introduces real hydrodynamic data to address the limitations of purely numerical theoretical analysis, ensuring high fidelity. Additionally, it reduces the need for real-time communication between numerical computation and servo loading, thereby reducing hardware and software requirements. In this study, experimental verification of the proposed method is conducted, and the results illustrate that the method can address the convergence issue of dynamic response for FSDI of structures in the water after a finite number of iterations. Moreover, regarding the hydrodynamic force as a physical substructure helps prevent errors arising from repeated loading processes, enabling the benefits of the OI-RTHS method. This study offers potential insights for the research on the FSDI of structures, also other environmental loadings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于离线迭代的实时混合模拟,用于受地震激励结构中的高保真流固动力相互作用
本研究介绍了一种基于离线迭代的实时混合模拟(OI-RTHS)方法,这是一种模拟地震激励下流体-结构动力相互作用(FSDI)的新方法。采用这种方法,流体动力被视为物理子结构,而数值计算和伺服加载则在地震事件的整个持续时间内独立进行。通过迭代修正输入指令信号,并在每次迭代过程中获得输出响应信号,最终实现边界的平衡协调。这一特点引入了真实的流体力学数据,解决了纯数值理论分析的局限性,确保了高保真度。此外,它还减少了数值计算与伺服加载之间的实时通信需求,从而降低了硬件和软件要求。本研究对所提出的方法进行了实验验证,结果表明该方法可以在有限次迭代后解决水中结构 FSDI 动态响应的收敛问题。此外,将水动力视为物理子结构有助于防止重复加载过程产生的误差,从而实现 OI-RTHS 方法的优势。这项研究为结构的 FSDI 以及其他环境荷载的研究提供了潜在的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
期刊最新文献
Digital twins-boosted identification of bridge vehicle loads integrating video and physics Offline iteration-based real-time hybrid simulation for high-fidelity fluid-structure dynamic interaction in structures subjected to seismic excitation Complete dispersion characteristics of elastic waves in periodically multilayered arbitrarily-anisotropic media A novel modular origami strategy: Achieving adjustable Poisson’s ratio and tunable distinctive mechanical properties for versatile applications Stress-constrained topology optimization using the velocity field level set method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1