Highly dispersed nanocomposite based on magnesium ion modified and silver nanoparticles loaded graphene oxide for enhanced antibacterial activity of silicone coatings
{"title":"Highly dispersed nanocomposite based on magnesium ion modified and silver nanoparticles loaded graphene oxide for enhanced antibacterial activity of silicone coatings","authors":"Xufeng Zhang , Zhanping Zhang , Qi'’an Chen , Jialiang Xing , Yuhong Qi , Zhilian Wu","doi":"10.1016/j.diamond.2024.111702","DOIUrl":null,"url":null,"abstract":"<div><div>Silver nanoparticles (Ag NPs) possess excellent antibacterial properties and have received widespread attention. However, the poor dispersion and easy aggregation of Ag NPs can severely diminish their antibacterial efficacy, limiting their practical applications. In this work, we report a simple method for preparing graphene oxide (GO) nanocomposites (Mg-GO/Ag NPs), in which GO is modified by Mg<sup>2+</sup> and uniformly loaded with Ag NPs. The Ag NPs have an average diameter of approximately 11.14 nm, and uniformly are deposited on the surface of the GO. Compared with GO, the dispersion of Mg-GO/Ag NPs in deionized water (DW) and <em>N</em>, <em>N</em>-dimethylformamide (DMF) is significantly improved. The reaction principle of preparing Mg-GO/Ag NPs was revealed by gas chromatography–mass spectrometry (GC–MS). Additionally, we studied the antibacterial properties of Mg-GO/Ag NPs coatings against marine bacteria and <em>Navicula tenera</em>. This study introduces a novel approach for the preparation of high-efficiency silver-based antifouling coatings, with promising potential for a wide range of marine antifouling applications.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111702"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009154","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Silver nanoparticles (Ag NPs) possess excellent antibacterial properties and have received widespread attention. However, the poor dispersion and easy aggregation of Ag NPs can severely diminish their antibacterial efficacy, limiting their practical applications. In this work, we report a simple method for preparing graphene oxide (GO) nanocomposites (Mg-GO/Ag NPs), in which GO is modified by Mg2+ and uniformly loaded with Ag NPs. The Ag NPs have an average diameter of approximately 11.14 nm, and uniformly are deposited on the surface of the GO. Compared with GO, the dispersion of Mg-GO/Ag NPs in deionized water (DW) and N, N-dimethylformamide (DMF) is significantly improved. The reaction principle of preparing Mg-GO/Ag NPs was revealed by gas chromatography–mass spectrometry (GC–MS). Additionally, we studied the antibacterial properties of Mg-GO/Ag NPs coatings against marine bacteria and Navicula tenera. This study introduces a novel approach for the preparation of high-efficiency silver-based antifouling coatings, with promising potential for a wide range of marine antifouling applications.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.