Maximizing the efficiency of layered double hydroxides as a slow-release phosphate fertilizer: A study on the impact of plant growth-promoting rhizobacteria
{"title":"Maximizing the efficiency of layered double hydroxides as a slow-release phosphate fertilizer: A study on the impact of plant growth-promoting rhizobacteria","authors":"Amir Hassanzadeh , Mohsen Hamidpour , Payman Abbaszadeh Dahaji , Abdolreza Akhgar , Khalil Kariman","doi":"10.1016/j.clay.2024.107620","DOIUrl":null,"url":null,"abstract":"<div><div>Layered double hydroxides (LDH) have gained considerable attention for their potential application in agriculture, serving as a slow-release source of essential nutrients for plants. This study aimed to investigate the effects of Mg-Al-LDH materials (with M<sup>2+</sup>/M<sup>3+</sup> ratios of 2:1 and 3:1) intercalated with phosphate, both with and without the presence of two plant growth-promoting rhizobacteria (PGPR) strains, on maize growth and the uptake of phosphorus (P), magnesium (Mg), and manganese (Mn). The LDH materials were synthesized, and their properties were assessed by X-ray diffraction (XRD) patterns, Fourier-transform infrared (FT-IR) spectra, and elemental analysis. In an in vitro experiment, the P solubilization capacity of five PGPR strains was evaluated, and the two most effective strains (<em>Bacillus anthracis</em>: B1 & <em>Pseudomonas</em> sp.: B2) were selected for the subsequent pot trials (greenhouse). In the pot experiment, the effectiveness of these two bacterial strains was evaluated in relation to the availability of P for maize plants from specific quantities of Mg-Al-LDH-P (2:1) and Mg-Al-LDH-P (3:1) materials amended in 500 g of soil, providing P concentrations of 0, 50, and 100 mg kg<sup>−1</sup>. A treatment of triple superphosphate (TSP) was also included as a fast-release P source (50 mg P kg<sup>−1</sup>). Irrespective of the type of LDH used, the application of LDHs significantly increased the shoot and root biomass of maize plants; the LDH effect was similar or even higher than that of the TSP, driven by the LDH type and P content. The application of LDHs and TSP resulted in higher shoot P concentration in maize plants compared to the untreated control. Inoculation with both bacterial strains increased the shoot P concentration of maize plants in the absence of any P treatments. Moreover, both bacterial strains increased the shoot P concentration of plants in LDH 2:1 (100 mg P kg<sup>−1</sup>) and TSP treatments, indicating synergistic interactions between PGPR and LDH 2:1 and TSP (while no synergism was found between PGPR and other LDH treatments). Without any LDH/TSP application, only the B1 strain increased the shoot and root biomass of plants compared to the non-inoculated control. In terms of shoot biomass, no synergistic effects were observed in any PGPR-LDH combinations compared to the individual application of PGPR and LDH, which could possibly be due to the short growth period (40 days) of plants. Overall, this study suggests that LDH (2,1) and LDH (3,1) can effectively serve as a P source for enhancing plant growth under P deficiency conditions. Furthermore, the results underscore the potential of PGPR strains to release P from P-containing LDH compounds, which could vary based on the molar ratios of metal cations in LDHs.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"262 ","pages":"Article 107620"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003685","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Layered double hydroxides (LDH) have gained considerable attention for their potential application in agriculture, serving as a slow-release source of essential nutrients for plants. This study aimed to investigate the effects of Mg-Al-LDH materials (with M2+/M3+ ratios of 2:1 and 3:1) intercalated with phosphate, both with and without the presence of two plant growth-promoting rhizobacteria (PGPR) strains, on maize growth and the uptake of phosphorus (P), magnesium (Mg), and manganese (Mn). The LDH materials were synthesized, and their properties were assessed by X-ray diffraction (XRD) patterns, Fourier-transform infrared (FT-IR) spectra, and elemental analysis. In an in vitro experiment, the P solubilization capacity of five PGPR strains was evaluated, and the two most effective strains (Bacillus anthracis: B1 & Pseudomonas sp.: B2) were selected for the subsequent pot trials (greenhouse). In the pot experiment, the effectiveness of these two bacterial strains was evaluated in relation to the availability of P for maize plants from specific quantities of Mg-Al-LDH-P (2:1) and Mg-Al-LDH-P (3:1) materials amended in 500 g of soil, providing P concentrations of 0, 50, and 100 mg kg−1. A treatment of triple superphosphate (TSP) was also included as a fast-release P source (50 mg P kg−1). Irrespective of the type of LDH used, the application of LDHs significantly increased the shoot and root biomass of maize plants; the LDH effect was similar or even higher than that of the TSP, driven by the LDH type and P content. The application of LDHs and TSP resulted in higher shoot P concentration in maize plants compared to the untreated control. Inoculation with both bacterial strains increased the shoot P concentration of maize plants in the absence of any P treatments. Moreover, both bacterial strains increased the shoot P concentration of plants in LDH 2:1 (100 mg P kg−1) and TSP treatments, indicating synergistic interactions between PGPR and LDH 2:1 and TSP (while no synergism was found between PGPR and other LDH treatments). Without any LDH/TSP application, only the B1 strain increased the shoot and root biomass of plants compared to the non-inoculated control. In terms of shoot biomass, no synergistic effects were observed in any PGPR-LDH combinations compared to the individual application of PGPR and LDH, which could possibly be due to the short growth period (40 days) of plants. Overall, this study suggests that LDH (2,1) and LDH (3,1) can effectively serve as a P source for enhancing plant growth under P deficiency conditions. Furthermore, the results underscore the potential of PGPR strains to release P from P-containing LDH compounds, which could vary based on the molar ratios of metal cations in LDHs.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...