Comparative analysis of powertrain architectures for fuel cell light commercial vehicles in terms of performance and durability

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS Energy Conversion and Management Pub Date : 2024-11-04 DOI:10.1016/j.enconman.2024.119191
R. Novella, M. Lopez-Juarez, D. González-Domínguez, I. Nidaguila
{"title":"Comparative analysis of powertrain architectures for fuel cell light commercial vehicles in terms of performance and durability","authors":"R. Novella,&nbsp;M. Lopez-Juarez,&nbsp;D. González-Domínguez,&nbsp;I. Nidaguila","doi":"10.1016/j.enconman.2024.119191","DOIUrl":null,"url":null,"abstract":"<div><div>At the present time, the critical climate situation has raised awareness about the importance of developing carbon-free technologies. In this context, fuel cell systems (FCS) have become one of the key technologies in the pathway to decarbonization. Given that road transport is a major contributor to greenhouse gas (GHG) emissions, this paper focuses on a specific segment of this sector: light commercial vehicles (LCVs). The current market situation shows that LCV manufacturers have not yet decided what is the appropriate powertrain architecture for this kind of vehicle. Thus, the current paper studies a wide range of possible FCS-based propulsive system designs, changing the size of the FCS, electric battery and H<sub>2</sub> tank. These propulsive system architectures are analyzed concerning the performance of the vehicle, in terms of consumption and range, and the durability of its FCS. The evaluation of these different designs will be highly valuable for the LCV industry and manufacturers, as it allows to understand the optimal powertrain solution. The study demonstrates that a significant increase in range can be achieved with only a minor penalty in hydrogen consumption. Additionally, the research indicates that it is feasible to employ one of the most durable FCS designs while meeting LCV mission requirements with minimal consumption penalty. In conclusion, this paper provides valuable data to the ongoing research in this field, offering a detailed analysis of the impact of H<sub>2</sub> consumption, autonomy, and durability of the FCS across various vehicle architectures under typical LCV driving conditions.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890424011324","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

At the present time, the critical climate situation has raised awareness about the importance of developing carbon-free technologies. In this context, fuel cell systems (FCS) have become one of the key technologies in the pathway to decarbonization. Given that road transport is a major contributor to greenhouse gas (GHG) emissions, this paper focuses on a specific segment of this sector: light commercial vehicles (LCVs). The current market situation shows that LCV manufacturers have not yet decided what is the appropriate powertrain architecture for this kind of vehicle. Thus, the current paper studies a wide range of possible FCS-based propulsive system designs, changing the size of the FCS, electric battery and H2 tank. These propulsive system architectures are analyzed concerning the performance of the vehicle, in terms of consumption and range, and the durability of its FCS. The evaluation of these different designs will be highly valuable for the LCV industry and manufacturers, as it allows to understand the optimal powertrain solution. The study demonstrates that a significant increase in range can be achieved with only a minor penalty in hydrogen consumption. Additionally, the research indicates that it is feasible to employ one of the most durable FCS designs while meeting LCV mission requirements with minimal consumption penalty. In conclusion, this paper provides valuable data to the ongoing research in this field, offering a detailed analysis of the impact of H2 consumption, autonomy, and durability of the FCS across various vehicle architectures under typical LCV driving conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
燃料电池轻型商用车动力系统结构在性能和耐用性方面的比较分析
当前,严峻的气候形势提高了人们对开发无碳技术重要性的认识。在此背景下,燃料电池系统(FCS)已成为去碳化道路上的关键技术之一。鉴于公路运输是温室气体(GHG)排放的主要来源,本文将重点关注该行业的一个特殊领域:轻型商用车(LCV)。目前的市场情况表明,轻型商用车制造商尚未确定此类车辆的合适动力总成结构。因此,本文研究了一系列可能的基于 FCS 的推进系统设计,改变了 FCS、电动电池和 H2 罐的尺寸。本文分析了这些推进系统结构在消耗和续航方面的性能,以及其燃料控制系统的耐用性。对这些不同设计的评估将对轻型商用车行业和制造商非常有价值,因为通过评估可以了解最佳的动力总成解决方案。研究表明,在氢消耗量略有减少的情况下,续驶里程可以显著增加。此外,研究还表明,在满足 LCV 任务要求的同时,采用一种最耐用的 FCS 设计是可行的,而且消耗量最小。总之,本文为该领域正在进行的研究提供了宝贵的数据,详细分析了在典型的 LCV 驾驶条件下,各种车辆结构对氢气消耗、自主性和 FCS 耐用性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
期刊最新文献
Cutting-edge biomass gasification technologies for renewable energy generation and achieving net zero emissions Efficient framework for energy management of microgrid installed in Aljouf region considering renewable energy and electric vehicles Evaluating fuel cell power systems for coastal and inland waterway vessels: Technical and economic perspectives Biomimetic low carbonization efficient solar-driven thermochemical energy storage reactor design inspired by the diatoms’ superior photosynthesis capacity Reducing the lifecycle carbon emissions of rice straw-to-methanol for alternative marine fuel through self-generation and renewable electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1