{"title":"AIE-derived fluorescent silsesquioxane-based hybrid aerogel for light-enhanced gold recovery","authors":"Mengshuang Zhang, Hongzhi Liu","doi":"10.1016/j.desal.2024.118265","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, two aggregation-induced emission (AIE)-active organic fluorescent monomers (TPV, TPC) were synthesized by Knoevenagel reaction of 2,2′-([1,1′-biphenyl]-4,4′-diyl)diacetonitrile with benzaldehyde and 4-bromobenzaldehyde, respectively. Subsequently, two fluorescent hybrid porous polymers with semiconductor performance (PCS-TPV, PCS-TPC) were prepared successfully by connecting octavinyl silsesquioxane (OVS) with TPV and TPC through Friedel-Crafts reaction and Heck coupling, respectively. Among them, PCS-TPV with a hyper-crosslinked structure offered a specific surface area of up to 1165 m<sup>2</sup> g<sup>−1</sup>; PCS-TPC was the first AIE-derived fluorescent hybrid silsesquioxane-based semiconductor polymer with 3-D conjugated structure. Compared with PCS-TPV, PCS-TPC exhibited stronger visible light absorption, higher fluorescent performance and quantum yield due to its high AIE-active unit content. Besides, PCS-TPC exhibited a remarkable gold recovery capacity (Q<sub>m</sub> = 2728 mg g<sup>−1</sup>) when exposed to visible light irradiation. Adsorption mechanism revealed that the photoelectrons produced by PCS-TPC under visible light irradiation reduced all adsorbed Au(III) to Au(I) and Au(0). Furthermore, a hybrid aerogel was prepared through physical blending of PCS-TPC with chitosan, overcoming the limitation that insoluble powder was difficult to process and recycle. This work provided a very efficient, sustainable, and industrially feasible way for gold recovery in e-waste.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118265"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009767","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, two aggregation-induced emission (AIE)-active organic fluorescent monomers (TPV, TPC) were synthesized by Knoevenagel reaction of 2,2′-([1,1′-biphenyl]-4,4′-diyl)diacetonitrile with benzaldehyde and 4-bromobenzaldehyde, respectively. Subsequently, two fluorescent hybrid porous polymers with semiconductor performance (PCS-TPV, PCS-TPC) were prepared successfully by connecting octavinyl silsesquioxane (OVS) with TPV and TPC through Friedel-Crafts reaction and Heck coupling, respectively. Among them, PCS-TPV with a hyper-crosslinked structure offered a specific surface area of up to 1165 m2 g−1; PCS-TPC was the first AIE-derived fluorescent hybrid silsesquioxane-based semiconductor polymer with 3-D conjugated structure. Compared with PCS-TPV, PCS-TPC exhibited stronger visible light absorption, higher fluorescent performance and quantum yield due to its high AIE-active unit content. Besides, PCS-TPC exhibited a remarkable gold recovery capacity (Qm = 2728 mg g−1) when exposed to visible light irradiation. Adsorption mechanism revealed that the photoelectrons produced by PCS-TPC under visible light irradiation reduced all adsorbed Au(III) to Au(I) and Au(0). Furthermore, a hybrid aerogel was prepared through physical blending of PCS-TPC with chitosan, overcoming the limitation that insoluble powder was difficult to process and recycle. This work provided a very efficient, sustainable, and industrially feasible way for gold recovery in e-waste.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.