Rodrigo Metzger da Silva, Ronnie Rodrigo Rego, Alfredo Rocha de Faria
{"title":"Integrated analysis strategy for detecting gear contact fatigue before reaching failure interruption criterion","authors":"Rodrigo Metzger da Silva, Ronnie Rodrigo Rego, Alfredo Rocha de Faria","doi":"10.1016/j.jsv.2024.118792","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying the occurrence of gear contact fatigue failure as early as possible is essential for condition-based maintenance (CBM). Vibration signals can be used to identify gear contact fatigue. However, the use of vibration signals can be challenging due to its complexity, compounded by lower levels of vibration during the initial stages of contact fatigue. The present study details a new algorithm that integrates stand-alone features to correlate the vibrational signal with early failure occurrence. The study aim is to identify the failure in the early stages, before reaching the ISO 6336–5 stopping criterion of 4 % damaged area. A damage induction on the flank of helical gears is applied to simulate and characterize the failure occurrence. Damping characteristics with impact evaluation, <em>Kurtosis</em> analysis and the monitoring of the Gear Meshing Frequency are applied to characterize the failure signature. This strategy stands out by the integration of these stand-alone features and their behavior. The algorithm's capacity is verified through durability tests, promoting the natural evolution of this failure mode. Results show a success rate of above 80 % at identifying the failure presence before the stopping criterion limit.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"595 ","pages":"Article 118792"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005546","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying the occurrence of gear contact fatigue failure as early as possible is essential for condition-based maintenance (CBM). Vibration signals can be used to identify gear contact fatigue. However, the use of vibration signals can be challenging due to its complexity, compounded by lower levels of vibration during the initial stages of contact fatigue. The present study details a new algorithm that integrates stand-alone features to correlate the vibrational signal with early failure occurrence. The study aim is to identify the failure in the early stages, before reaching the ISO 6336–5 stopping criterion of 4 % damaged area. A damage induction on the flank of helical gears is applied to simulate and characterize the failure occurrence. Damping characteristics with impact evaluation, Kurtosis analysis and the monitoring of the Gear Meshing Frequency are applied to characterize the failure signature. This strategy stands out by the integration of these stand-alone features and their behavior. The algorithm's capacity is verified through durability tests, promoting the natural evolution of this failure mode. Results show a success rate of above 80 % at identifying the failure presence before the stopping criterion limit.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.