{"title":"Low-cost constant time signed digit selection for most significant bit first multiplication","authors":"Ghassem Jaberipur , Saeid Gorgin , Jeong-A. Lee","doi":"10.1016/j.micpro.2024.105118","DOIUrl":null,"url":null,"abstract":"<div><div>Serial binary multiplication is frequently used in many digital applications. In particular, left-to-right (aka online) manipulation of operands promotes the real-time generation of product digits for immediate utilization in subsequent online computations (e.g., successive layers of a neural network). In the left-to-right arithmetic operations, where a residual is maintained for digit selection, utilization of a redundant number system for the representation of outputs is mandatory, while the input operands and the residual may be redundant or non-redundant. However, when the input data paths are narrow (e.g., eight bits as in BFloat16), conventional non-redundant representations of inputs and residual provide some advantages. For example, the immediate and costless sign detection of the residual that is necessary for the next digit selection; a property not shared by redundant numbers. Nevertheless, digit selection, as practiced in the previous realizations, with both redundant and non-redundant inputs and/or residual, is slow and rather complex. Therefore, in this paper, we offer an imprecise, but faster digit selection scheme, with the required correction in the next cycle. Analytical evaluations and synthesis of the proposed circuits on FPGA platform, shows 30 % speedup and less cost with respect to both cases with redundant and non-redundant inputs and residual.</div></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"111 ","pages":"Article 105118"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124001133","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Serial binary multiplication is frequently used in many digital applications. In particular, left-to-right (aka online) manipulation of operands promotes the real-time generation of product digits for immediate utilization in subsequent online computations (e.g., successive layers of a neural network). In the left-to-right arithmetic operations, where a residual is maintained for digit selection, utilization of a redundant number system for the representation of outputs is mandatory, while the input operands and the residual may be redundant or non-redundant. However, when the input data paths are narrow (e.g., eight bits as in BFloat16), conventional non-redundant representations of inputs and residual provide some advantages. For example, the immediate and costless sign detection of the residual that is necessary for the next digit selection; a property not shared by redundant numbers. Nevertheless, digit selection, as practiced in the previous realizations, with both redundant and non-redundant inputs and/or residual, is slow and rather complex. Therefore, in this paper, we offer an imprecise, but faster digit selection scheme, with the required correction in the next cycle. Analytical evaluations and synthesis of the proposed circuits on FPGA platform, shows 30 % speedup and less cost with respect to both cases with redundant and non-redundant inputs and residual.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.