On the turnpike to design of deep neural networks: Explicit depth bounds

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS IFAC Journal of Systems and Control Pub Date : 2024-11-02 DOI:10.1016/j.ifacsc.2024.100290
Timm Faulwasser , Arne-Jens Hempel , Stefan Streif
{"title":"On the turnpike to design of deep neural networks: Explicit depth bounds","authors":"Timm Faulwasser ,&nbsp;Arne-Jens Hempel ,&nbsp;Stefan Streif","doi":"10.1016/j.ifacsc.2024.100290","DOIUrl":null,"url":null,"abstract":"<div><div>It is well-known that the training of Deep Neural Networks (DNN) can be formalized in the language of optimal control. In this context, this paper leverages classical turnpike properties of optimal control problems to attempt a quantifiable answer to the question of how many layers should be considered in a DNN. The underlying assumption is that the number of neurons per layer—i.e., the width of the DNN—is kept constant. Pursuing a different route than the classical analysis of approximation properties of sigmoidal functions, we prove explicit bounds on the required depths of DNNs based on asymptotic reachability assumptions and a dissipativity-inducing choice of the regularization terms in the training problem. Numerical results obtained for the two spiral task data set for classification indicate that the proposed constructive estimates can provide non-conservative depth bounds.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"30 ","pages":"Article 100290"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

It is well-known that the training of Deep Neural Networks (DNN) can be formalized in the language of optimal control. In this context, this paper leverages classical turnpike properties of optimal control problems to attempt a quantifiable answer to the question of how many layers should be considered in a DNN. The underlying assumption is that the number of neurons per layer—i.e., the width of the DNN—is kept constant. Pursuing a different route than the classical analysis of approximation properties of sigmoidal functions, we prove explicit bounds on the required depths of DNNs based on asymptotic reachability assumptions and a dissipativity-inducing choice of the regularization terms in the training problem. Numerical results obtained for the two spiral task data set for classification indicate that the proposed constructive estimates can provide non-conservative depth bounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通往深度神经网络设计之路显式深度边界
众所周知,深度神经网络(DNN)的训练可以用最优控制语言来形式化。在此背景下,本文利用最优控制问题的经典岔道特性,尝试对 DNN 应考虑多少层这一问题给出可量化的答案。基本假设是每层神经元的数量,即 DNN 的宽度保持不变。我们采用了与经典的西格玛函数逼近特性分析不同的方法,基于渐近可达性假设和训练问题中正则化项的耗散诱导选择,证明了 DNN 所需深度的明确界限。针对两个螺旋任务分类数据集获得的数值结果表明,所提出的构造性估计可以提供非保守的深度边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
期刊最新文献
Learning optimal safety certificates for unknown nonlinear control systems A sparse approach to transfer function estimation via Least Absolute Shrinkage and Selection Operator Local vs regional neural air pollution forecasting models A top-down approach for climate change mitigation strategies A bilevel optimization approach for Balancing Markets with electric vehicle aggregators and smart charging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1