Alexander Dohms;Nico Vieweg;Steffen Breuer;Tina Heßelmann;Robert Herda;Nadja Regner;Shahram Keyvaninia;Marko Gruner;Lars Liebermeister;Martin Schell;Robert B. Kohlhaas
{"title":"Fiber-Coupled THz TDS System With mW-Level THz Power and up to 137-dB Dynamic Range","authors":"Alexander Dohms;Nico Vieweg;Steffen Breuer;Tina Heßelmann;Robert Herda;Nadja Regner;Shahram Keyvaninia;Marko Gruner;Lars Liebermeister;Martin Schell;Robert B. Kohlhaas","doi":"10.1109/TTHZ.2024.3467173","DOIUrl":null,"url":null,"abstract":"Terahertz (THz) time-domain spectroscopy (TDS) offers considerable potential for a wide range of industrial applications, including thickness determination and defect identification through imaging. Fiber-coupled THz TDS systems are particularly promising due to their flexible and robust operation in a variety of environments. However, increasing the THz power of these systems remains a critical challenge for applications that require high dynamic range in very short acquisition times. Here, we present a significant improvement of a commercially available THz TDS system by combining a novel ultrafast Er-doped fiber laser and improved iron-doped InGaAs photoconductive THz emitters. The Er-doped fiber laser offers the combination of high average power up to 70 mW and ultrashort pulse duration down to 45 fs with a fiber delivery of 6.3 m to the THz antennas. The THz emitters are optimized in terms of the photoconductive material and gap size for excitation at optical power >50 mW and provide up to (958 ± 67) µW of emitted THz power. These improvements enable a record peak dynamic range of 117 dB for 60-s acquisition time and the highest peak dynamic range ever measured in a THz TDS setup of 137 dB.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"857-864"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10690264","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10690264/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Terahertz (THz) time-domain spectroscopy (TDS) offers considerable potential for a wide range of industrial applications, including thickness determination and defect identification through imaging. Fiber-coupled THz TDS systems are particularly promising due to their flexible and robust operation in a variety of environments. However, increasing the THz power of these systems remains a critical challenge for applications that require high dynamic range in very short acquisition times. Here, we present a significant improvement of a commercially available THz TDS system by combining a novel ultrafast Er-doped fiber laser and improved iron-doped InGaAs photoconductive THz emitters. The Er-doped fiber laser offers the combination of high average power up to 70 mW and ultrashort pulse duration down to 45 fs with a fiber delivery of 6.3 m to the THz antennas. The THz emitters are optimized in terms of the photoconductive material and gap size for excitation at optical power >50 mW and provide up to (958 ± 67) µW of emitted THz power. These improvements enable a record peak dynamic range of 117 dB for 60-s acquisition time and the highest peak dynamic range ever measured in a THz TDS setup of 137 dB.
期刊介绍:
IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.