Tomoya Otono, Hamdi Ben Yahia, Chie Hotehama, Kota Motohashi, Atsushi Sakuda and Akitoshi Hayashi
{"title":"Preparation and characterization of new solid electrolytes Na3−xZn1−xAl1+xS4†","authors":"Tomoya Otono, Hamdi Ben Yahia, Chie Hotehama, Kota Motohashi, Atsushi Sakuda and Akitoshi Hayashi","doi":"10.1039/D4LF00275J","DOIUrl":null,"url":null,"abstract":"<p >Sulfide solid electrolytes, known for their high ionic conductivity and formability, are key materials for the practical use of all-solid-state sodium batteries. In this study, new sulfide solid electrolyte materials, Na<small><sub>3−<em>x</em></sub></small>Zn<small><sub>1−<em>x</em></sub></small>Al<small><sub>1+<em>x</em></sub></small>S<small><sub>4</sub></small> (<em>x</em> ≤ 0.2), were prepared <em>via</em> a self flux synthesis route, using reagents such as Na<small><sub>2</sub></small>S, Zn, Al, and S. The new materials were characterized using X-ray powder diffraction, Raman spectroscopy, and electrochemical impedance spectroscopy. Na<small><sub>3−<em>x</em></sub></small>Zn<small><sub>1−<em>x</em></sub></small>Al<small><sub>1+<em>x</em></sub></small>S<small><sub>4</sub></small> formed a solid solution up to <em>x</em> = 0.2 and crystallized with a β-Ca<small><sub>3</sub></small>Ga<small><sub>2</sub></small>N<small><sub>4</sub></small>-type structure. As the Al content increased, the number of sodium vacancies also increased, resulting in improved ionic conductivity. Among Na<small><sub>3−<em>x</em></sub></small>Zn<small><sub>1−<em>x</em></sub></small>Al<small><sub>1+<em>x</em></sub></small>S<small><sub>4</sub></small> samples, Na<small><sub>2.9</sub></small>Zn<small><sub>0.9</sub></small>Al<small><sub>1.1</sub></small>S<small><sub>4</sub></small> exhibited the highest ionic conductivity of 4.5 × 10<small><sup>−6</sup></small> S cm<small><sup>−1</sup></small> at 25 °C and lowest activation energy of 32 kJ mol<small><sup>−1</sup></small>. Furthermore, the Na<small><sub>2.9</sub></small>Zn<small><sub>0.9</sub></small>Al<small><sub>1.1</sub></small>S<small><sub>4</sub></small> phase was relatively stable when exposed to humid air, which facilitated its practical use in all-solid-state sodium batteries.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 6","pages":" 1419-1425"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lf/d4lf00275j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lf/d4lf00275j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfide solid electrolytes, known for their high ionic conductivity and formability, are key materials for the practical use of all-solid-state sodium batteries. In this study, new sulfide solid electrolyte materials, Na3−xZn1−xAl1+xS4 (x ≤ 0.2), were prepared via a self flux synthesis route, using reagents such as Na2S, Zn, Al, and S. The new materials were characterized using X-ray powder diffraction, Raman spectroscopy, and electrochemical impedance spectroscopy. Na3−xZn1−xAl1+xS4 formed a solid solution up to x = 0.2 and crystallized with a β-Ca3Ga2N4-type structure. As the Al content increased, the number of sodium vacancies also increased, resulting in improved ionic conductivity. Among Na3−xZn1−xAl1+xS4 samples, Na2.9Zn0.9Al1.1S4 exhibited the highest ionic conductivity of 4.5 × 10−6 S cm−1 at 25 °C and lowest activation energy of 32 kJ mol−1. Furthermore, the Na2.9Zn0.9Al1.1S4 phase was relatively stable when exposed to humid air, which facilitated its practical use in all-solid-state sodium batteries.