Hugo Molinares, Fernanda Pinilla, Enrique Muñoz, Francisco Muñoz, Vitalie Eremeev
{"title":"Generation of phonon quantum states and quantum correlations among single photon emitters in hexagonal boron nitride","authors":"Hugo Molinares, Fernanda Pinilla, Enrique Muñoz, Francisco Muñoz, Vitalie Eremeev","doi":"10.1140/epjqt/s40507-024-00286-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hexagonal boron nitride exhibits two types of defects with great potential for quantum information technologies: single-photon emitters (SPEs) and one-dimensional grain boundaries hosting topologically-protected phonons, termed as <i>topologically-protected phonon lines</i> (TPL). Here, by means of a simple effective model and density functional theory calculations, we show that it is possible to use these phonons for the transmission of information. Particularly, a single SPE can be used to induce single-, two- and qubit-phonon states in the one-dimensional channel, and <i>(ii)</i> two distant SPEs can be coupled by the TPL that acts as a waveguide, thus exhibiting strong quantum correlations. We highlight the possibilities offered by this material-built-in nano-architecture as a phononic device for quantum information technologies.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00286-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00286-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hexagonal boron nitride exhibits two types of defects with great potential for quantum information technologies: single-photon emitters (SPEs) and one-dimensional grain boundaries hosting topologically-protected phonons, termed as topologically-protected phonon lines (TPL). Here, by means of a simple effective model and density functional theory calculations, we show that it is possible to use these phonons for the transmission of information. Particularly, a single SPE can be used to induce single-, two- and qubit-phonon states in the one-dimensional channel, and (ii) two distant SPEs can be coupled by the TPL that acts as a waveguide, thus exhibiting strong quantum correlations. We highlight the possibilities offered by this material-built-in nano-architecture as a phononic device for quantum information technologies.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.