{"title":"Numerical and Constitutive Analysis of Granular Column Collapse Experiments Under Reduced-Gravity Conditions","authors":"Sen Yang, Xiaohui Cheng, Meiying Hou","doi":"10.1007/s12217-024-10145-5","DOIUrl":null,"url":null,"abstract":"<div><p>The research on granular column collapse under various gravity levels is of great significance for the study of granular rheology and its applications in reduced-gravity space engineering. We firstly reviewed a rare experimental investigation that observed a gravity-related run-out distance of the granular column collapse in this paper. To identify the origin of the gravity-related run-out distance, a unified constitutive model was used to simulate the behavior of granular materials in these experiments based on a large deformation numerical method, the smoothed particle hydrodynamics (SPH). The parameters of this constitutive model were also discussed. Numerical simulations can reproduce the run-out distances that positively correlate with the gravity level, above 0.03 g in particular. Based on the numerical and constitutive analysis, this gravity-related runout distance is attributed to the combined influence of gravity-induced pressure and shear strain rate levels on granular flow.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10145-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The research on granular column collapse under various gravity levels is of great significance for the study of granular rheology and its applications in reduced-gravity space engineering. We firstly reviewed a rare experimental investigation that observed a gravity-related run-out distance of the granular column collapse in this paper. To identify the origin of the gravity-related run-out distance, a unified constitutive model was used to simulate the behavior of granular materials in these experiments based on a large deformation numerical method, the smoothed particle hydrodynamics (SPH). The parameters of this constitutive model were also discussed. Numerical simulations can reproduce the run-out distances that positively correlate with the gravity level, above 0.03 g in particular. Based on the numerical and constitutive analysis, this gravity-related runout distance is attributed to the combined influence of gravity-induced pressure and shear strain rate levels on granular flow.
研究不同重力水平下的粒料柱坍塌对研究粒料流变学及其在减重空间工程中的应用具有重要意义。本文首先回顾了一项罕见的实验研究,即观察到颗粒柱坍塌与重力相关的跑偏距离。为了确定与重力相关的塌落距离的来源,我们使用了一个统一的构成模型来模拟这些实验中颗粒材料的行为,该模型基于一种大变形数值方法--平滑颗粒流体力学(SPH)。此外,还讨论了该构成模型的参数。数值模拟能够再现与重力水平正相关的跳出距离,尤其是 0.03 g 以上的跳出距离。根据数值和构成分析,这种与重力相关的跳动距离归因于重力引起的压力和剪切应变率水平对颗粒流动的综合影响。
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology