{"title":"Preparation technologies for polymer composites with high-directional thermal conductivity: A review","authors":"Yanshuai Duan, Huitao Yu, Fei Zhang, Mengmeng Qin, Wei Feng","doi":"10.1007/s12274-024-6920-y","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of science and technology, electronic devices are moving towards miniaturization and integration, which brings high heat dissipation requirements. During the heat dissipation process of a heating element, heat may spread to adjacent components, causing a decrease in the performance of the element. To avoid this situation, the ability to directionally transfer heat energy is urgently needed. Therefore, thermal interface materials (TIMs) with directional high thermal conductivity are more critical in thermal management system of electronic devices. For decades, many efforts have been devoted to the design and fabrication of TIMs with high-directional thermal conductivity. Benefiting from the advantage in feasibility, low-cost and scalability, compositing with thermal conductive fillers has been proved to be promising strategy for fabricating the high-directional thermal conductive TIMs. This review summarizes the present preparation technologies of polymer composites with high-directional thermal conductivity based on structural engineering of thermal conductive fillers, focusing on the manufacturing process, mechanisms, achievements, advantages and disadvantages of different technologies. Finally, we summarize the existing problems and potential challenges in the field of directional high thermal conductivity composites.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9796 - 9814"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6920-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of science and technology, electronic devices are moving towards miniaturization and integration, which brings high heat dissipation requirements. During the heat dissipation process of a heating element, heat may spread to adjacent components, causing a decrease in the performance of the element. To avoid this situation, the ability to directionally transfer heat energy is urgently needed. Therefore, thermal interface materials (TIMs) with directional high thermal conductivity are more critical in thermal management system of electronic devices. For decades, many efforts have been devoted to the design and fabrication of TIMs with high-directional thermal conductivity. Benefiting from the advantage in feasibility, low-cost and scalability, compositing with thermal conductive fillers has been proved to be promising strategy for fabricating the high-directional thermal conductive TIMs. This review summarizes the present preparation technologies of polymer composites with high-directional thermal conductivity based on structural engineering of thermal conductive fillers, focusing on the manufacturing process, mechanisms, achievements, advantages and disadvantages of different technologies. Finally, we summarize the existing problems and potential challenges in the field of directional high thermal conductivity composites.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.