Development of Supercapacitor Electrodes with High Strength via Inkjet Printing of Reduced Graphene Oxide/Aramid Nanofibers Membranes

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2024-10-23 DOI:10.1007/s12221-024-00754-7
Xiaodong Tan, Qingyan Peng, Zbigniew Stempień, Jana Saskova, Mohanapriya Venkataraman, Jakub Wiener, Jiri Militky
{"title":"Development of Supercapacitor Electrodes with High Strength via Inkjet Printing of Reduced Graphene Oxide/Aramid Nanofibers Membranes","authors":"Xiaodong Tan,&nbsp;Qingyan Peng,&nbsp;Zbigniew Stempień,&nbsp;Jana Saskova,&nbsp;Mohanapriya Venkataraman,&nbsp;Jakub Wiener,&nbsp;Jiri Militky","doi":"10.1007/s12221-024-00754-7","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors (SCs), as emerging electrochemical energy storage devices, have garnered widespread attention due to their rapid charge–discharge characteristics and high power density. With the growing demand for electronic devices and the diversification of applications in daily life scenarios, SCs with outstanding flexibility, mechanical and electrochemical performance are becoming increasingly important. In this study, an in situ reduction method was employed, utilizing inkjet printing technology to deposit reduced graphene oxide (rGO) onto the prepared aramid nanofibrous (ANFs)/PVDF/PVA composite film for the fabrication of solid-state SCs. The optimized ANFs/PVDF/PVA composite film exhibited a tensile strength and Young's modulus of 185 N and 760 MPa, respectively. Even in a bent state, the cyclic voltammetry (CV) curves remained essentially unchanged. At a current density of 0.1 A/g, the specific capacitance and energy density reached 120.9 F/g and 10.8 Wh/kg, respectively, while at a current density of 0.5 A/g, the power density reached 3201 W/kg. After 5000 charge–discharge cycles, the efficiency maintained above 90%. Such exceptional electrochemical and mechanical performance provides more options for the manufacturing of next-generation portable and wearable electronic devices.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 11","pages":"4215 - 4226"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00754-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors (SCs), as emerging electrochemical energy storage devices, have garnered widespread attention due to their rapid charge–discharge characteristics and high power density. With the growing demand for electronic devices and the diversification of applications in daily life scenarios, SCs with outstanding flexibility, mechanical and electrochemical performance are becoming increasingly important. In this study, an in situ reduction method was employed, utilizing inkjet printing technology to deposit reduced graphene oxide (rGO) onto the prepared aramid nanofibrous (ANFs)/PVDF/PVA composite film for the fabrication of solid-state SCs. The optimized ANFs/PVDF/PVA composite film exhibited a tensile strength and Young's modulus of 185 N and 760 MPa, respectively. Even in a bent state, the cyclic voltammetry (CV) curves remained essentially unchanged. At a current density of 0.1 A/g, the specific capacitance and energy density reached 120.9 F/g and 10.8 Wh/kg, respectively, while at a current density of 0.5 A/g, the power density reached 3201 W/kg. After 5000 charge–discharge cycles, the efficiency maintained above 90%. Such exceptional electrochemical and mechanical performance provides more options for the manufacturing of next-generation portable and wearable electronic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过喷墨打印还原氧化石墨烯/芳纶纳米纤维膜开发高强度超级电容器电极
超级电容器(SC)作为新兴的电化学储能设备,因其快速充放电特性和高功率密度而受到广泛关注。随着人们对电子设备需求的不断增长以及日常生活应用场景的多样化,具有出色灵活性、机械性能和电化学性能的超级电容器变得越来越重要。本研究采用原位还原法,利用喷墨打印技术将还原氧化石墨烯(rGO)沉积到制备的芳纶纳米纤维(ANFs)/PVDF/PVA 复合薄膜上,用于制造固态 SC。优化后的 ANFs/PVDF/PVA 复合薄膜的拉伸强度和杨氏模量分别为 185 N 和 760 MPa。即使在弯曲状态下,循环伏安 (CV) 曲线也基本保持不变。在电流密度为 0.1 A/g 时,比电容和能量密度分别达到 120.9 F/g 和 10.8 Wh/kg,而在电流密度为 0.5 A/g 时,功率密度达到 3201 W/kg。经过 5000 次充放电循环后,效率保持在 90% 以上。如此优异的电化学和机械性能为制造下一代便携式和可穿戴电子设备提供了更多选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Synthesis of Brilliance Disperse Dyes Derived from Antipyrine and Their Dyeing Ability on Polyester Fabrics for Enhanced Fastness and Color Strength Effective Oil/Water Separation Sorbent Based on Nylon 6,6-Organoclay Nanofiber Mats Anti-dripping Flame Retardancy and Mechanical Properties of Polylactide/Ammonium Polyphosphate/Rayon Fiber Composites A Comprehensive Analysis of Moisture Management and Geometric Properties in Knitted Fabrics for Enhanced Sportswear Performance New Insights into the Stiffness and Strength of Flax Composites from Tsai’s Modulus and the Area of the Failure Envelope
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1