{"title":"Preparation of an All-Natural Seaweed Functionalized Lyocell Fiber: A Scalable Approach from Nature to Fabrics","authors":"Jiayu Zhang, Ting Li, TianYin Liu, Chenxi Zhang, Xiaojun Li, Chunxiao Yu, Zhongkai Xu, Genli Wang, Chunzu Cheng, Jigang Xu","doi":"10.1007/s12221-024-00730-1","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the green and environmentally friendly production process of lyocell fiber, an innovative lyocell fiber was prepared by online-adding seaweed micron particles using a new dispersion procedure. Considering the fiber diameter range of 10–15 μm. To improve the incorporation rate of seaweed powders, the particle size distribution and compatibility of seaweed powders in NMMO were first studied. On comparing the powder size distribution of seaweed particle in different disperse liquid, it was found that seaweed powders are partially soluble in NMMO and weaken the inherent alkaline environment, while the remaining powders swell more significantly with increasing NMMO concentration. Following this protocol, an integrated dispersion process was successfully developed with high seaweed loading in low-concentration NMMO solution. The resultant functionalized seaweed modified lyocell fibers (abbreviated as “SL Fiber”) demonstrated effective loading of seaweed particles, comparable mechanical properties, improved heat resistance and antibacterial properties. Thus, the fibers meet the major requirements for hometextiles, packaging materials, filtration, and other fields. The antibacterial rates of fibers against <i>Escherichia coli</i>, Staphylococcus aureus, and <i>Candida albicans</i> all reached the requirements, inhibiting harmful bacteria growth and preventing mold and odor. To demonstrate the multi-functionality in textile applications, the novel SL fibers were scale produced on production line. The article demonstrated a facile and scalable approach from fiber preparation and yarn spinning to textile weaving applications. These novel materials are natural, recyclable and renewable, which is more in line with the development strategy of green manufacturing and the green cycle of the industrial chain.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 11","pages":"4257 - 4269"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00730-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the green and environmentally friendly production process of lyocell fiber, an innovative lyocell fiber was prepared by online-adding seaweed micron particles using a new dispersion procedure. Considering the fiber diameter range of 10–15 μm. To improve the incorporation rate of seaweed powders, the particle size distribution and compatibility of seaweed powders in NMMO were first studied. On comparing the powder size distribution of seaweed particle in different disperse liquid, it was found that seaweed powders are partially soluble in NMMO and weaken the inherent alkaline environment, while the remaining powders swell more significantly with increasing NMMO concentration. Following this protocol, an integrated dispersion process was successfully developed with high seaweed loading in low-concentration NMMO solution. The resultant functionalized seaweed modified lyocell fibers (abbreviated as “SL Fiber”) demonstrated effective loading of seaweed particles, comparable mechanical properties, improved heat resistance and antibacterial properties. Thus, the fibers meet the major requirements for hometextiles, packaging materials, filtration, and other fields. The antibacterial rates of fibers against Escherichia coli, Staphylococcus aureus, and Candida albicans all reached the requirements, inhibiting harmful bacteria growth and preventing mold and odor. To demonstrate the multi-functionality in textile applications, the novel SL fibers were scale produced on production line. The article demonstrated a facile and scalable approach from fiber preparation and yarn spinning to textile weaving applications. These novel materials are natural, recyclable and renewable, which is more in line with the development strategy of green manufacturing and the green cycle of the industrial chain.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers