{"title":"Development of a deep learning–based feature stream network for forecasting riverine harmful algal blooms from a network perspective","authors":"Jihoon Shin, YoonKyung Cha","doi":"10.1016/j.watres.2024.122751","DOIUrl":null,"url":null,"abstract":"Global increases in the occurrence of harmful algal blooms (HABs) are of major concern in water quality and resource management. A predictive model capable of quantifying the spatiotemporal associations between HABs and their influencing factors is required for effective preventive management. In this study, a feature stream network (FSN) model is proposed to provide daily forecasts of cyanobacteria abundance at multiple monitoring sites simultaneously in a river network. The spatial connectivity between monitoring sites was expressed as a directed acyclic graph comprising edges and nodes representing flows and monitoring sites, respectively. Furthermore, a segment-wise node connection structure was developed to extract the latent features of a river segment comprising individual nodes and sequentially transfer them to the downstream segment(s). In addition, a feature engineering–attention hybrid mechanism was employed to address temporal mismatches among different monitoring schemes while adding explainability to the model. Consequently, the FSN showed improved predictive performance, temporal resolution, and explainability for multi-site forecasts of HAB in a single model framework. The developed model was applied to a bloom-prone middle course of the Nakdong River, South Korea. Various hydrological, environmental, and biological factors were utilized for forecasting the cyanobacteria abundance. The FSN exhibited a high degree of accuracy across the sites for the test data with a coefficient of determination in the range of 0.64–0.71 and root mean square error in the range of 2.06–2.26 cells/mL on natural log scales. Although the relative importance of input features varied across the sites, the features extracted from nearby nodes consistently exhibited high importance in forecasting the cyanobacteria abundance. These explanations indicate that the proposed model can successfully characterize the spatial hierarchy of a river network. A scenario analysis suggested that reduced total nitrogen loads in the effluents from the wastewater treatment plant and the combined operations of upstream and downstream weirs were effective in managing HABs.","PeriodicalId":443,"journal":{"name":"Water Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122751","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Global increases in the occurrence of harmful algal blooms (HABs) are of major concern in water quality and resource management. A predictive model capable of quantifying the spatiotemporal associations between HABs and their influencing factors is required for effective preventive management. In this study, a feature stream network (FSN) model is proposed to provide daily forecasts of cyanobacteria abundance at multiple monitoring sites simultaneously in a river network. The spatial connectivity between monitoring sites was expressed as a directed acyclic graph comprising edges and nodes representing flows and monitoring sites, respectively. Furthermore, a segment-wise node connection structure was developed to extract the latent features of a river segment comprising individual nodes and sequentially transfer them to the downstream segment(s). In addition, a feature engineering–attention hybrid mechanism was employed to address temporal mismatches among different monitoring schemes while adding explainability to the model. Consequently, the FSN showed improved predictive performance, temporal resolution, and explainability for multi-site forecasts of HAB in a single model framework. The developed model was applied to a bloom-prone middle course of the Nakdong River, South Korea. Various hydrological, environmental, and biological factors were utilized for forecasting the cyanobacteria abundance. The FSN exhibited a high degree of accuracy across the sites for the test data with a coefficient of determination in the range of 0.64–0.71 and root mean square error in the range of 2.06–2.26 cells/mL on natural log scales. Although the relative importance of input features varied across the sites, the features extracted from nearby nodes consistently exhibited high importance in forecasting the cyanobacteria abundance. These explanations indicate that the proposed model can successfully characterize the spatial hierarchy of a river network. A scenario analysis suggested that reduced total nitrogen loads in the effluents from the wastewater treatment plant and the combined operations of upstream and downstream weirs were effective in managing HABs.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.