Zi Ye, Leilei Yu, Dezhi Lu, Qingsong Zhang, Arjan Narbad, Wei Chen, Qixiao Zhai, Fengwei Tian
{"title":"Mitigating effect of Bifidobacterium longum CCFM1077 on nonylphenol toxicity: An integrative in vitro and in vivo analysis","authors":"Zi Ye, Leilei Yu, Dezhi Lu, Qingsong Zhang, Arjan Narbad, Wei Chen, Qixiao Zhai, Fengwei Tian","doi":"10.1016/j.jhazmat.2024.136401","DOIUrl":null,"url":null,"abstract":"Nonylphenol (NP), an endocrine-disrupting compound (EDC) with accumulative properties, poses significant risks to human health and the environment. The pivotal role of probiotics in mitigating EDC toxicity has garnered increasing attention. In this study, we assessed the protective effects of <em>Bifidobacterium longum</em> CCFM1077, a probiotic with outstanding <em>in vitro</em> NP-binding ability, against NP-induced toxicity in rats. This analysis revealed that <em>B. longum</em> CCFM1077 effectively promoted the NP excretion and enhanced intestinal barrier integrity. Interestingly, <em>B. longum</em> CCFM1077, by modulating the structure and the function of gut microbiota, increased the abundance of <em>Turicibacter</em>, significantly elevated the level of butyric acid, and upregulated antioxidant-related metabolic pathways, thereby alleviating brain inflammation and ultimately improving behavioral disorders. This study elucidated a strategy to alleviate NP toxicity and lays a theoretical foundation for the development of novel intestinal protection strategies. It supports environmental sustainability by offering a strategy to combat NP bioaccumulation, aligning with global initiatives to minimize the environmental impact of industrial pollutants.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136401","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nonylphenol (NP), an endocrine-disrupting compound (EDC) with accumulative properties, poses significant risks to human health and the environment. The pivotal role of probiotics in mitigating EDC toxicity has garnered increasing attention. In this study, we assessed the protective effects of Bifidobacterium longum CCFM1077, a probiotic with outstanding in vitro NP-binding ability, against NP-induced toxicity in rats. This analysis revealed that B. longum CCFM1077 effectively promoted the NP excretion and enhanced intestinal barrier integrity. Interestingly, B. longum CCFM1077, by modulating the structure and the function of gut microbiota, increased the abundance of Turicibacter, significantly elevated the level of butyric acid, and upregulated antioxidant-related metabolic pathways, thereby alleviating brain inflammation and ultimately improving behavioral disorders. This study elucidated a strategy to alleviate NP toxicity and lays a theoretical foundation for the development of novel intestinal protection strategies. It supports environmental sustainability by offering a strategy to combat NP bioaccumulation, aligning with global initiatives to minimize the environmental impact of industrial pollutants.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.