Shilei Liu , Haitao Gao , Daixiu Wei , Charlie Kong , L.S.R. Kumara , M.W. Fu , Hailiang Yu
{"title":"Deformation mechanism of a metastable medium entropy alloy strengthened by the synergy of heterostructure design and cryo-pre-straining","authors":"Shilei Liu , Haitao Gao , Daixiu Wei , Charlie Kong , L.S.R. Kumara , M.W. Fu , Hailiang Yu","doi":"10.1016/j.ijplas.2024.104162","DOIUrl":null,"url":null,"abstract":"<div><div>Face-centered cubic (FCC) medium entropy alloys (MEAs) have received considerable attention due to their impressive mechanical properties and responses. However, their practical application is limited by their modest yield strengths. The potential enhancement of the mechanical properties of single-phase MEAs was explored in this study through a synergistic approach combining heterogeneous structure design with subsequent cryo-pre-straining. A heterogeneous lamella structure was produced in a single-phase Fe<sub>55</sub>Mn<sub>20</sub>Cr<sub>15</sub>Ni<sub>10</sub> MEA via two-step rolling and annealing. Cryo-pre-straining at varying degrees (6, 12, 21, and 36%) introduced hexagonal close-packed (HCP) phase, high-density dislocations, twins, and stacking faults, leveraging the reduced stacking fault energy at cryogenic temperatures. This process enhanced the alloy's yield strength from 353 MPa to 1.2 GPa (compared to the baseline uniform coarse-grained structure), while maintaining an acceptable total elongation of 8.4%. The impact of cryo-pre-straining on the microstructure and mechanical properties of the MEA was assessed using <em>in</em>-<em>situ</em> synchrotron X-ray diffraction analysis. Cryo-pre-straining (36%) achieved a higher dislocation density (6.1 × 10<sup>15</sup> <em>m</em><sup>−2</sup>) compared to room-temperature straining (2.5 × 10<sup>15</sup> <em>m</em><sup>−2</sup>). The stress contribution from HCP-martensite and the evolution of dislocation density during loading were quantified, along with observations of negative stacking fault probability and strain-induced HCP→FCC reverse transformation in cryo-pre-strained samples under loading conditions. Furthermore, the contributions of regulated microstructures to the enhancement of yield strength were quantitatively assessed.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"183 ","pages":"Article 104162"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002894","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Face-centered cubic (FCC) medium entropy alloys (MEAs) have received considerable attention due to their impressive mechanical properties and responses. However, their practical application is limited by their modest yield strengths. The potential enhancement of the mechanical properties of single-phase MEAs was explored in this study through a synergistic approach combining heterogeneous structure design with subsequent cryo-pre-straining. A heterogeneous lamella structure was produced in a single-phase Fe55Mn20Cr15Ni10 MEA via two-step rolling and annealing. Cryo-pre-straining at varying degrees (6, 12, 21, and 36%) introduced hexagonal close-packed (HCP) phase, high-density dislocations, twins, and stacking faults, leveraging the reduced stacking fault energy at cryogenic temperatures. This process enhanced the alloy's yield strength from 353 MPa to 1.2 GPa (compared to the baseline uniform coarse-grained structure), while maintaining an acceptable total elongation of 8.4%. The impact of cryo-pre-straining on the microstructure and mechanical properties of the MEA was assessed using in-situ synchrotron X-ray diffraction analysis. Cryo-pre-straining (36%) achieved a higher dislocation density (6.1 × 1015m−2) compared to room-temperature straining (2.5 × 1015m−2). The stress contribution from HCP-martensite and the evolution of dislocation density during loading were quantified, along with observations of negative stacking fault probability and strain-induced HCP→FCC reverse transformation in cryo-pre-strained samples under loading conditions. Furthermore, the contributions of regulated microstructures to the enhancement of yield strength were quantitatively assessed.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.