Renormalized density matrix downfolding: A rigorous framework in learning emergent models fromab initiomany-body calculations

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-11-04 DOI:10.1103/physrevb.110.195103
Yueqing Chang, Sonali Joshi, Lucas K. Wagner
{"title":"Renormalized density matrix downfolding: A rigorous framework in learning emergent models fromab initiomany-body calculations","authors":"Yueqing Chang, Sonali Joshi, Lucas K. Wagner","doi":"10.1103/physrevb.110.195103","DOIUrl":null,"url":null,"abstract":"We present a generalized framework, renormalized density matrix downfolding (RDMD), to derive systematically improvable, highly accurate, and nonperturbative effective models from <i>ab initio</i> calculations. This framework moves beyond the common role of <i>ab initio</i> calculations as calculating the parameters of a proposed Hamiltonian. Instead, RDMD provides the capability to decide whether a given effective Hilbert space can be identified from the <i>ab initio</i> data and assess the relative quality of <i>ansatz</i> Hamiltonians. Any method of <i>ab initio</i> solution can be used as a data source, and as the <i>ab initio</i> solutions improve, the resultant model also improves. We demonstrate the framework in an application to the downfolding of a hydrogen chain to a spin model, in which we find the interatomic separations for which a nonperturbative mapping can be made even in the strong coupling regime where standard methods fail, and compute a renormalized spin model Hamiltonian that quantitatively reproduces the <i>ab initio</i> dynamics.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"242 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195103","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We present a generalized framework, renormalized density matrix downfolding (RDMD), to derive systematically improvable, highly accurate, and nonperturbative effective models from ab initio calculations. This framework moves beyond the common role of ab initio calculations as calculating the parameters of a proposed Hamiltonian. Instead, RDMD provides the capability to decide whether a given effective Hilbert space can be identified from the ab initio data and assess the relative quality of ansatz Hamiltonians. Any method of ab initio solution can be used as a data source, and as the ab initio solutions improve, the resultant model also improves. We demonstrate the framework in an application to the downfolding of a hydrogen chain to a spin model, in which we find the interatomic separations for which a nonperturbative mapping can be made even in the strong coupling regime where standard methods fail, and compute a renormalized spin model Hamiltonian that quantitatively reproduces the ab initio dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重正化密度矩阵折叠:从多体计算中学习新兴模型的严格框架
我们提出了一个广义框架--重归一化密度矩阵折叠(RDMD),以从原子序数计算中推导出系统改进的、高度精确的非微扰有效模型。这一框架超越了演算法在计算拟议哈密顿参数中的常见作用。取而代之的是,RDMD 能够决定是否能从原子序数数据中识别出给定的有效希尔伯特空间,并评估拟哈密顿的相对质量。任何从头开始求解的方法都可以用作数据源,随着从头开始求解的改进,结果模型也会随之改进。我们在氢链向自旋模型下折的应用中演示了这一框架,在这一应用中,我们找到了即使在标准方法失效的强耦合机制中也能做出非微扰映射的原子间分离,并计算出了定量再现了 ab initio 动力学的重规范化自旋模型哈密顿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Triplet nodal lines and Chern bands in X CuCl 3 ( X =K, Tl) Absence of magnetic order in epitaxial RuO 2 revealed by x-ray linear dichroism Field-induced superconductor-insulator transition in disordered two-dimensional electron systems: The case of amorphous indium-oxide thin films Statistics of Abelian topological excitations Probing quantum geometric nonlinear magnetization via second-harmonic magneto-optical Kerr effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1