Claudio A. Ruiz-Torres, Jiahao Zhu, Jocelyn A. Riet, Niher R. Sarker, Sara Abu-Obaid, Kevin D. Yuan, Charles-François de Lannoy, Jay R. Werber
{"title":"Ultra-Thin Cation Exchange Membranes: Sulfonated Polyamide Thin-Film Composite Membranes with High Charge Density","authors":"Claudio A. Ruiz-Torres, Jiahao Zhu, Jocelyn A. Riet, Niher R. Sarker, Sara Abu-Obaid, Kevin D. Yuan, Charles-François de Lannoy, Jay R. Werber","doi":"10.1021/acs.chemmater.4c02270","DOIUrl":null,"url":null,"abstract":"Advancements in membrane technology are crucial for electrochemical separations, such as ion exchange, and pressure-driven processes, such as nanofiltration (NF). This study introduces high-charge-density sulfonated polyamide thin-film composite membranes fabricated via interfacial polymerization using disulfonated monomers, resulting in ultra-thin (∼50 nm) films that serve as nanofiltration (NF) membranes or cation exchange membranes (CEMs). Post-modifications enabled precise control over membrane chemistry, enhancing CEM properties such as ion exchange capacity, water uptake, and fixed charge concentration. The high charge density led to ion selectivity in NF via the Donnan exclusion mechanism, facilitating effective separation of monovalent and divalent ions. The incorporation of sulfonic acids within an ultra-thin polyamide matrix significantly reduced the resistance for ion and proton transport, enabling high in-plane conductivities (Na<sup>+</sup>: >80 mS cm<sup>–1</sup>, H<sub>3</sub>O<sup>+</sup>: >200 mS cm<sup>–1</sup>) comparable to state-of-the-art polymer-based CEMs. Furthermore, the nanoscale thickness of these membranes dramatically enhanced ionic and proton conductance, achieving area conductance values 4 to 6 orders of magnitude higher than those of conventional thick CEMs. This enhancement is primarily attributed to the ultra-thin design of our sulfonated polyamide membrane, setting a new benchmark for the design and fabrication of highly conductive membranes, and laying the groundwork for future enhancements of ion conductive membranes for water purification and energy applications.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02270","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in membrane technology are crucial for electrochemical separations, such as ion exchange, and pressure-driven processes, such as nanofiltration (NF). This study introduces high-charge-density sulfonated polyamide thin-film composite membranes fabricated via interfacial polymerization using disulfonated monomers, resulting in ultra-thin (∼50 nm) films that serve as nanofiltration (NF) membranes or cation exchange membranes (CEMs). Post-modifications enabled precise control over membrane chemistry, enhancing CEM properties such as ion exchange capacity, water uptake, and fixed charge concentration. The high charge density led to ion selectivity in NF via the Donnan exclusion mechanism, facilitating effective separation of monovalent and divalent ions. The incorporation of sulfonic acids within an ultra-thin polyamide matrix significantly reduced the resistance for ion and proton transport, enabling high in-plane conductivities (Na+: >80 mS cm–1, H3O+: >200 mS cm–1) comparable to state-of-the-art polymer-based CEMs. Furthermore, the nanoscale thickness of these membranes dramatically enhanced ionic and proton conductance, achieving area conductance values 4 to 6 orders of magnitude higher than those of conventional thick CEMs. This enhancement is primarily attributed to the ultra-thin design of our sulfonated polyamide membrane, setting a new benchmark for the design and fabrication of highly conductive membranes, and laying the groundwork for future enhancements of ion conductive membranes for water purification and energy applications.
膜技术的进步对于电化学分离(如离子交换)和压力驱动过程(如纳滤)至关重要。本研究介绍了利用二磺化单体通过界面聚合制造的高电荷密度磺化聚酰胺薄膜复合膜,这种膜超薄(∼50 nm),可用作纳滤膜或阳离子交换膜。后期改性可实现对膜化学性质的精确控制,增强 CEM 性能,如离子交换能力、吸水性和固定电荷浓度。高电荷密度通过唐南排除机制实现了 NF 中的离子选择性,从而促进了一价离子和二价离子的有效分离。在超薄聚酰胺基质中加入磺酸可显著降低离子和质子的传输阻力,从而实现与最先进的聚合物基 CEM 不相上下的高面内电导率(Na+:80 mS cm-1,H3O+:200 mS cm-1)。此外,这些膜的纳米级厚度极大地增强了离子和质子的传导性,其面积传导值比传统的厚 CEM 高出 4 到 6 个数量级。这种增强主要归功于我们的磺化聚酰胺膜的超薄设计,为高导电膜的设计和制造树立了新的标杆,并为今后增强用于水净化和能源应用的离子导电膜奠定了基础。
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.