{"title":"Thermoelectric materials and applications in buildings","authors":"Qi Sun, Chunyu Du, Guangming Chen","doi":"10.1016/j.pmatsci.2024.101402","DOIUrl":null,"url":null,"abstract":"Thermoelectric materials are functional materials that utilize the movements of charge carriers to achieve the direct interconversions between heat and electricity. Recently, high-performance thermoelectric materials and multifunctional devices have witnessed explosive progresses to alleviate energy burdens. As the energy consumption in buildings continues to increase, the integration of thermoelectric materials with buildings provides a promising solution to improve the energy utilization efficiency. However, despite the rapid progress in thermoelectric technology, there remains a scarcity of comprehensive reviews and systematic assessments focused on the integration and applications of thermoelectric materials in building environments. This timely paper provides a thorough introduction to the research landscape, encompassing applications of thermoelectric materials, a brief historical overview of building technologies, and recent research trends in thermoelectric materials pertinent to buildings. We systematically elucidate the principles of thermoelectric materials and outlines the specific properties required for their application across various building components. Following this, the focus is on representative thermoelectric materials across four critical domains: energy harvesting, building cooling, temperature monitoring, and corrosion prevention. The discussion is structured according to the positioning and functional roles of devices integrated within buildings. Finally, we summarize the key findings and underscore the challenges and the future prospects for thermoelectric materials and devices in building applications.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.pmatsci.2024.101402","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric materials are functional materials that utilize the movements of charge carriers to achieve the direct interconversions between heat and electricity. Recently, high-performance thermoelectric materials and multifunctional devices have witnessed explosive progresses to alleviate energy burdens. As the energy consumption in buildings continues to increase, the integration of thermoelectric materials with buildings provides a promising solution to improve the energy utilization efficiency. However, despite the rapid progress in thermoelectric technology, there remains a scarcity of comprehensive reviews and systematic assessments focused on the integration and applications of thermoelectric materials in building environments. This timely paper provides a thorough introduction to the research landscape, encompassing applications of thermoelectric materials, a brief historical overview of building technologies, and recent research trends in thermoelectric materials pertinent to buildings. We systematically elucidate the principles of thermoelectric materials and outlines the specific properties required for their application across various building components. Following this, the focus is on representative thermoelectric materials across four critical domains: energy harvesting, building cooling, temperature monitoring, and corrosion prevention. The discussion is structured according to the positioning and functional roles of devices integrated within buildings. Finally, we summarize the key findings and underscore the challenges and the future prospects for thermoelectric materials and devices in building applications.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.