David Pereñiguez, Marina de Amicis, Richard Brito, Rodrigo Panosso Macedo
{"title":"Superradiant instability of magnetic black holes","authors":"David Pereñiguez, Marina de Amicis, Richard Brito, Rodrigo Panosso Macedo","doi":"10.1103/physrevd.110.104001","DOIUrl":null,"url":null,"abstract":"Black hole superradiance has proven to be very valuable in several realms of gravitational physics and holds a promising discovery potential. In this paper, we consider the superradiant instability of magnetically charged, rotating black holes and find a number of important differences with respect to neutral ones. Considering massive charged bosonic fields, we find that the instability timescale is much shorter, and this is true even if the black hole contains an order-one number of magnetic monopoles, or merely a single one, and possesses either low, moderate, or large values of angular momentum. In particular, the instability is drastically faster than the radiative-decay time of charged pions, potentially making it physically relevant. Furthermore, our analysis identifies the most unstable modes as a class of monopole spheroidal harmonics, which we dub north and south monopole modes, whose morphology is markedly different from the ones in standard superradiance since they extend along the rotational axis. For completeness, we also study the quasinormal mode spectrum and amplification factors of charged massless fields, finding no evidence of instabilities in that case.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"62 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.104001","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Black hole superradiance has proven to be very valuable in several realms of gravitational physics and holds a promising discovery potential. In this paper, we consider the superradiant instability of magnetically charged, rotating black holes and find a number of important differences with respect to neutral ones. Considering massive charged bosonic fields, we find that the instability timescale is much shorter, and this is true even if the black hole contains an order-one number of magnetic monopoles, or merely a single one, and possesses either low, moderate, or large values of angular momentum. In particular, the instability is drastically faster than the radiative-decay time of charged pions, potentially making it physically relevant. Furthermore, our analysis identifies the most unstable modes as a class of monopole spheroidal harmonics, which we dub north and south monopole modes, whose morphology is markedly different from the ones in standard superradiance since they extend along the rotational axis. For completeness, we also study the quasinormal mode spectrum and amplification factors of charged massless fields, finding no evidence of instabilities in that case.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.