Jia Zhu, Siyun Ren, Junnan Han, Zhengwei Yang, Jie Liang, Shijia Feng, Xing Zhang, Jun Xu
{"title":"Near-Unity Photothermal CO2 Hydrogenation to Methanol based on a Molecule/Nanocarbon Hybrid Catalyst","authors":"Jia Zhu, Siyun Ren, Junnan Han, Zhengwei Yang, Jie Liang, Shijia Feng, Xing Zhang, Jun Xu","doi":"10.1002/anie.202416376","DOIUrl":null,"url":null,"abstract":"Solar-driven CO2-to-methanol conversion provides an intriguing route for both solar energy storage and CO2 mitigation. For scalable applications, near-unity methanol selectivity is highly desirable to reduce the energy and cost endowed by low-value byproducts and complex separation processes, but so far has not been achieved. Here we demonstrate a molecule/nanocarbon hybrid catalyst composed of carbon nanotube-supported molecularly dispersed cobalt phthalocyanine (CoPc/CNT), which synergistically integrates high photothermal conversion capability for affording an optimal reaction temperature with homogeneous and intrinsically-efficient active sites, to achieve a catalytic activity of 2.4 mmol gcat-1 h-1 and selectivity of ~99% in direct photothermal CO2 hydrogenation to methanol reaction. Both theoretical calculations and operando characterizations consistently confirm that the unique electronic structure of CoPc and appropriate reaction temperature cooperatively enable a thermodynamic favorable reaction pathway for highly selective methanol production. This work represents an important milestone towards the development of advanced photothermal catalysts for scalable and cost-effective CO2 hydrogenation.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416376","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven CO2-to-methanol conversion provides an intriguing route for both solar energy storage and CO2 mitigation. For scalable applications, near-unity methanol selectivity is highly desirable to reduce the energy and cost endowed by low-value byproducts and complex separation processes, but so far has not been achieved. Here we demonstrate a molecule/nanocarbon hybrid catalyst composed of carbon nanotube-supported molecularly dispersed cobalt phthalocyanine (CoPc/CNT), which synergistically integrates high photothermal conversion capability for affording an optimal reaction temperature with homogeneous and intrinsically-efficient active sites, to achieve a catalytic activity of 2.4 mmol gcat-1 h-1 and selectivity of ~99% in direct photothermal CO2 hydrogenation to methanol reaction. Both theoretical calculations and operando characterizations consistently confirm that the unique electronic structure of CoPc and appropriate reaction temperature cooperatively enable a thermodynamic favorable reaction pathway for highly selective methanol production. This work represents an important milestone towards the development of advanced photothermal catalysts for scalable and cost-effective CO2 hydrogenation.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.