Robust, High-Temperature-Resistant Polyimide Separators with Vertically Aligned Uniform Nanochannels for High-Performance Lithium-Ion Batteries

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-11-05 DOI:10.1021/acsnano.4c11217
Qizhong Zhang, Linjing Chen, Xuanlin Li, Borui Hou, Xuanxuan Wu, Xiaoyu Gui, Dianliang Cao, Jiande Liu, Junshuai Li, Jinglai Duan, Dan Mo, Jie Liu, Huijun Yao
{"title":"Robust, High-Temperature-Resistant Polyimide Separators with Vertically Aligned Uniform Nanochannels for High-Performance Lithium-Ion Batteries","authors":"Qizhong Zhang, Linjing Chen, Xuanlin Li, Borui Hou, Xuanxuan Wu, Xiaoyu Gui, Dianliang Cao, Jiande Liu, Junshuai Li, Jinglai Duan, Dan Mo, Jie Liu, Huijun Yao","doi":"10.1021/acsnano.4c11217","DOIUrl":null,"url":null,"abstract":"Separator is an essential component of lithium-ion batteries (LIBs), playing a pivotal role in battery safety and electrochemical performance. However, conventional polyolefin separators suffer from poor thermal stability and nonuniform pore structures, hindering their effectiveness in preventing thermal shrinkage and inhibiting lithium (Li) dendrites. Herein, we present a robust, high-temperature-resistant polyimide (PI) separator with vertically aligned uniform nanochannels, fabricated via ion track-etching technology. The resultant PI track-etched membranes (PITEMs) effectively homogenize Li-ion distribution, demonstrating enhanced ionic conductivity (0.57 mS cm<sup>–1</sup>) and a high Li<sup>+</sup> transfer number (0.61). PITEMs significantly prolong the cycle life of Li/Li cells to 1200 h at 3 mA cm<sup>–2</sup>. For Li/LiFePO<sub>4</sub> cells, this approach enables a specific capacity of 143 mAh g<sup>–1</sup> and retains 83.88% capacity after 300 cycles at room temperature. At 80 °C, the capacity retention remains at 85.92% after 200 cycles. Additionally, graphite/LiFePO<sub>4</sub> pouch cells with PITEMs display enhanced cycling stability, retaining 73.25% capacity after 1000 cycles at room temperature and 78.41% after 100 cycles at 80 °C. Finally, PITEMs-based pouch cells can operate at 150 °C. This separator not only addresses the limitations of traditional separators, but also holds promise for mass production via roll-to-roll methods. We expect this work to offer insights into designing and manufacturing of functional separators for high-safety LIBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"242 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11217","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Separator is an essential component of lithium-ion batteries (LIBs), playing a pivotal role in battery safety and electrochemical performance. However, conventional polyolefin separators suffer from poor thermal stability and nonuniform pore structures, hindering their effectiveness in preventing thermal shrinkage and inhibiting lithium (Li) dendrites. Herein, we present a robust, high-temperature-resistant polyimide (PI) separator with vertically aligned uniform nanochannels, fabricated via ion track-etching technology. The resultant PI track-etched membranes (PITEMs) effectively homogenize Li-ion distribution, demonstrating enhanced ionic conductivity (0.57 mS cm–1) and a high Li+ transfer number (0.61). PITEMs significantly prolong the cycle life of Li/Li cells to 1200 h at 3 mA cm–2. For Li/LiFePO4 cells, this approach enables a specific capacity of 143 mAh g–1 and retains 83.88% capacity after 300 cycles at room temperature. At 80 °C, the capacity retention remains at 85.92% after 200 cycles. Additionally, graphite/LiFePO4 pouch cells with PITEMs display enhanced cycling stability, retaining 73.25% capacity after 1000 cycles at room temperature and 78.41% after 100 cycles at 80 °C. Finally, PITEMs-based pouch cells can operate at 150 °C. This separator not only addresses the limitations of traditional separators, but also holds promise for mass production via roll-to-roll methods. We expect this work to offer insights into designing and manufacturing of functional separators for high-safety LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能锂离子电池的具有垂直排列均匀纳米通道的坚固耐高温聚酰亚胺隔膜
隔膜是锂离子电池(LIB)的重要组成部分,对电池的安全性和电化学性能起着举足轻重的作用。然而,传统的聚烯烃隔膜热稳定性差,孔隙结构不均匀,无法有效防止热收缩和抑制锂(Li)枝晶。在此,我们介绍了一种通过离子轨道蚀刻技术制造的具有垂直排列均匀纳米通道的坚固耐高温聚酰亚胺(PI)隔膜。由此制成的 PI 轨道蚀刻膜(PITEM)可有效均匀锂离子分布,并显示出更高的离子电导率(0.57 mS cm-1)和更高的锂离子转移数(0.61)。在 3 mA cm-2 的条件下,PITEMs 可将锂/锂电池的循环寿命大幅延长至 1200 小时。对于 Li/LiFePO4 电池,这种方法可使比容量达到 143 mAh g-1,并且在室温下循环 300 次后仍能保持 83.88% 的容量。在 80 °C 下,循环 200 次后容量保持率为 85.92%。此外,含有 PITEMs 的石墨/磷酸铁锂袋式电池显示出更强的循环稳定性,在室温下循环 1000 次后容量保持率为 73.25%,在 80 °C 下循环 100 次后容量保持率为 78.41%。最后,基于 PITEMs 的袋式电池可在 150 °C 下工作。这种分离器不仅解决了传统分离器的局限性,而且有望通过卷对卷方法进行大规模生产。我们希望这项工作能为设计和制造高安全性锂离子电池的功能性分离器提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Unveiling Swift Heavy Ion Track Morphology in Sr-Based High-Entropy Perovskites Two-Dimensional Photothermal Nanosheets as Confined Gelation Platforms for Large-Scale, Ultrathin, and Uniform Lamellar Hydrogel Membranes Quantitative Mapping of the Lipid Nanoenvironment around Transmembrane Proteins in Living Cells Programmable Topotactic Phase Transformation of Correlated Mott Oxides toward Reconfigurable Photothermoelectric Devices Unraveling and Sliding of Polypeptide Strands Underlies the Exceptional Toughness of the Triple-Helix Collagen Molecule
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1