Inference of weak-form partial differential equations describing migration and proliferation mechanisms in wound healing experiments on cancer cells.

ArXiv Pub Date : 2024-10-24
Patrick C Kinnunen, Siddhartha Srivastava, Zhenlin Wang, Kenneth K Y Ho, Brock A Humphries, Siyi Chen, Jennifer J Linderman, Gary D Luker, Kathryn E Luker, Krishna Garikipati
{"title":"Inference of weak-form partial differential equations describing migration and proliferation mechanisms in wound healing experiments on cancer cells.","authors":"Patrick C Kinnunen, Siddhartha Srivastava, Zhenlin Wang, Kenneth K Y Ho, Brock A Humphries, Siyi Chen, Jennifer J Linderman, Gary D Luker, Kathryn E Luker, Krishna Garikipati","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting signaling pathways that drive cancer cell migration or proliferation is a common therapeutic approach. A popular experimental technique, the scratch assay, measures the migration and proliferation-driven cell closure of a defect in a confluent cell monolayer. These assays do not measure dynamic effects. To improve analysis of scratch assays, we combine high-throughput scratch assays, video microscopy, and system identification to infer partial differential equation (PDE) models of cell migration and proliferation. We capture the evolution of cell density fields over time using live cell microscopy and automated image processing. We employ weak form-based system identification techniques for cell density dynamics modeled with first-order kinetics of advection-diffusion-reaction systems. We present a comparison of our methods to results obtained using traditional inference approaches on previously analyzed 1-dimensional scratch assay data. We demonstrate the application of this pipeline on high throughput 2-dimensional scratch assays and find that low levels of trametinib inhibit wound closure primarily by decreasing random cell migration by approximately 20%. Our integrated experimental and computational pipeline can be adapted for quantitatively inferring the effect of biological perturbations on cell migration and proliferation in various cell lines.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Targeting signaling pathways that drive cancer cell migration or proliferation is a common therapeutic approach. A popular experimental technique, the scratch assay, measures the migration and proliferation-driven cell closure of a defect in a confluent cell monolayer. These assays do not measure dynamic effects. To improve analysis of scratch assays, we combine high-throughput scratch assays, video microscopy, and system identification to infer partial differential equation (PDE) models of cell migration and proliferation. We capture the evolution of cell density fields over time using live cell microscopy and automated image processing. We employ weak form-based system identification techniques for cell density dynamics modeled with first-order kinetics of advection-diffusion-reaction systems. We present a comparison of our methods to results obtained using traditional inference approaches on previously analyzed 1-dimensional scratch assay data. We demonstrate the application of this pipeline on high throughput 2-dimensional scratch assays and find that low levels of trametinib inhibit wound closure primarily by decreasing random cell migration by approximately 20%. Our integrated experimental and computational pipeline can be adapted for quantitatively inferring the effect of biological perturbations on cell migration and proliferation in various cell lines.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推断描述癌细胞伤口愈合实验中迁移和增殖机制的弱式偏微分方程。
靶向驱动癌细胞迁移或增殖的信号通路是一种常见的治疗方法。一种流行的实验技术--划痕试验--测量的是汇合细胞单层中由迁移和增殖驱动的细胞封闭缺陷。这些试验无法测量动态效应。为了改进划痕试验的分析,我们将高通量划痕试验、视频显微镜和系统识别结合起来,推断细胞迁移和增殖的偏微分方程(PDE)模型。我们利用活细胞显微镜和自动图像处理技术捕捉细胞密度场随时间的演变。我们采用基于弱形式的系统识别技术,对以一阶动力学平流-扩散-反应系统建模的细胞密度动力学进行识别。我们将我们的方法与传统推理方法在之前分析的一维划痕检测数据上得到的结果进行了比较。我们在高通量二维划痕试验中演示了这一方法的应用,发现低水平的曲美替尼主要通过减少约 20% 的随机细胞迁移来抑制伤口闭合。我们的综合实验和计算管道可用于定量推断生物扰动对各种细胞系中细胞迁移和增殖的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metastability in networks of nonlinear stochastic integrate-and-fire neurons. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Timing consistency of T cell receptor activation in a stochastic model combining kinetic segregation and proofreading. Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle. Adversarial Attacks on Large Language Models in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1