Competing Bifurcations Determine Symmetry Breaking During Droplet Snaps on Smooth Patterned Surfaces.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-11-06 DOI:10.1021/acs.langmuir.4c02908
Lucile Bisquert, Élfego Ruiz-Gutiérrez, Marc Pradas, Rodrigo Ledesma-Aguilar
{"title":"Competing Bifurcations Determine Symmetry Breaking During Droplet Snaps on Smooth Patterned Surfaces.","authors":"Lucile Bisquert, Élfego Ruiz-Gutiérrez, Marc Pradas, Rodrigo Ledesma-Aguilar","doi":"10.1021/acs.langmuir.4c02908","DOIUrl":null,"url":null,"abstract":"<p><p>The shape and stability of a droplet in contact with a solid surface is affected by the chemical composition and topography of the solid, and crucially, by the droplet's size. During a variation in size, most often observed during evaporation, droplets on smooth patterned surfaces can undergo sudden shape and position changes. Such changes, called snaps, are prompted by the surface pattern and arise from fold and pitchfork bifurcations which respectively cause symmetric and asymmetric motions. Yet, which type of snap is likely to be observed is an open fundamental question that has relevance in the rational design of surfaces for managing droplets. Here we show that the likelihood of observing symmetric or asymmetric snaps depends on the distance between fold and pitchfork bifurcation points and on how this distance varies for droplets that grow or shrink in size on surfaces patterned with a smooth topography. Our results can help develop strategies to control droplets by exploiting smooth surface patterns but also have broader relevance in situations where different types of bifurcations compete in determining the stability of a system, for instance in snap-through instabilities observed in elastic media.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02908","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The shape and stability of a droplet in contact with a solid surface is affected by the chemical composition and topography of the solid, and crucially, by the droplet's size. During a variation in size, most often observed during evaporation, droplets on smooth patterned surfaces can undergo sudden shape and position changes. Such changes, called snaps, are prompted by the surface pattern and arise from fold and pitchfork bifurcations which respectively cause symmetric and asymmetric motions. Yet, which type of snap is likely to be observed is an open fundamental question that has relevance in the rational design of surfaces for managing droplets. Here we show that the likelihood of observing symmetric or asymmetric snaps depends on the distance between fold and pitchfork bifurcation points and on how this distance varies for droplets that grow or shrink in size on surfaces patterned with a smooth topography. Our results can help develop strategies to control droplets by exploiting smooth surface patterns but also have broader relevance in situations where different types of bifurcations compete in determining the stability of a system, for instance in snap-through instabilities observed in elastic media.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
竞争性分岔决定了光滑图案表面水滴扣合过程中的对称性破坏。
与固体表面接触的液滴的形状和稳定性受固体的化学成分和地形的影响,最重要的是受液滴大小的影响。在蒸发过程中最常观察到的尺寸变化过程中,光滑图案表面上的液滴会发生形状和位置的突然变化。这种变化被称为 "突变"(snap),是由表面图案引起的,由分别引起对称和不对称运动的褶皱和杈状分叉产生。然而,哪种类型的卡扣有可能被观察到是一个未决的基本问题,它与管理液滴的表面的合理设计息息相关。在这里,我们展示了观察到对称或不对称卡扣的可能性取决于折叠点和叉形分叉点之间的距离,以及液滴在具有光滑地形图案的表面上增大或缩小时这一距离的变化情况。我们的研究结果不仅有助于开发利用光滑表面图案控制液滴的策略,而且在不同类型的分叉竞争决定系统稳定性的情况下,例如在弹性介质中观察到的卡突不稳定性中,也具有更广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Adsorption Thermodynamics for Process Simulation. Influence of SHMP Concentration on Rutile Flotation in BHA System: Guiding the Separation of Rutile and Hornblende. Mechanisms of Hydrophobic Recovery of Poly(dimethylsiloxane) Elastomers after Plasma/Corona Treatments: A Minireview. Introducing Oxygen Vacancies into a WO3 Photoanode through NaH2PO2 Treatment for Efficient Water Splitting. Ab Initio Molecular Dynamics Investigation of Water and Butanone Adsorption on UiO-66 with Defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1