Advances in Spectro-Microscopy Methods and their Applications in the Characterization of Perovskite Materials.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-06 DOI:10.1002/adma.202411916
Yanqi Luo, Sarah Wieghold, Lea Nienhaus
{"title":"Advances in Spectro-Microscopy Methods and their Applications in the Characterization of Perovskite Materials.","authors":"Yanqi Luo, Sarah Wieghold, Lea Nienhaus","doi":"10.1002/adma.202411916","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite materials are promising contenders as the active layer in light-harvesting and light-emitting applications if their long-term stability can be sufficiently increased. Chemical and structural engineering are shown to enhance long-term stability, but the increased complexity of the material system also leads to inhomogeneous functional properties across various length scales. Thus, scanning probe and high-resolution microscopy characterization techniques are needed to reveal the role of local defects and the results promise to act as the foundation for future device improvements. A look at the parameter space: technique-specific sample penetration depth versus probe size highlights a gap in current methods. High spatial resolution combined with a deep penetration depth is not yet achievable. However, multimodal measurement technique may be the key to covering this parameter space. In this perspective, current advanced spectro-microscopy methods which have been applied to perovskite materials are highlighted.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411916","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite materials are promising contenders as the active layer in light-harvesting and light-emitting applications if their long-term stability can be sufficiently increased. Chemical and structural engineering are shown to enhance long-term stability, but the increased complexity of the material system also leads to inhomogeneous functional properties across various length scales. Thus, scanning probe and high-resolution microscopy characterization techniques are needed to reveal the role of local defects and the results promise to act as the foundation for future device improvements. A look at the parameter space: technique-specific sample penetration depth versus probe size highlights a gap in current methods. High spatial resolution combined with a deep penetration depth is not yet achievable. However, multimodal measurement technique may be the key to covering this parameter space. In this perspective, current advanced spectro-microscopy methods which have been applied to perovskite materials are highlighted.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透镜材料表征中光谱-显微学方法及其应用的进展。
如果能充分提高包光体材料的长期稳定性,它们就有希望成为光收集和发光应用中的活性层。化学和结构工程已被证明可提高长期稳定性,但材料系统复杂性的增加也会导致不同长度尺度的功能特性不均匀。因此,需要采用扫描探针和高分辨率显微镜表征技术来揭示局部缺陷的作用,其结果有望成为未来改进设备的基础。通过观察参数空间:特定技术的样品穿透深度与探针尺寸,可以发现当前方法中存在的差距。目前还无法实现高空间分辨率与深度穿透相结合。然而,多模态测量技术可能是覆盖这一参数空间的关键。从这个角度出发,重点介绍了目前应用于包晶材料的先进光谱显微镜方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Engineering Strain-Defects to Enhance Enzymatic Therapy and Induce Ferroptosis. Evidence of Quasi-Na Metallic Clusters in Sodium Ion Batteries through In Situ X-Ray Diffraction. Advances in Spectro-Microscopy Methods and their Applications in the Characterization of Perovskite Materials. Congruent Glass Composite Scintillator for Efficient High-Energy Ray Detection. Constructing an Active Sulfur-Vacancy-Rich Surface for Selective *CH3-CH3 Coupling in CO2-to-C2H6 Conversion With 92% Selectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1