Congruent Glass Composite Scintillator for Efficient High-Energy Ray Detection.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-06 DOI:10.1002/adma.202412661
Dazhao Wang, Hongwei Li, Jingfei Chen, Dianhao Hou, Xunpiao Liu, Zhuoming Yu, Shichao Lv, Jianrong Qiu, Shifeng Zhou
{"title":"Congruent Glass Composite Scintillator for Efficient High-Energy Ray Detection.","authors":"Dazhao Wang, Hongwei Li, Jingfei Chen, Dianhao Hou, Xunpiao Liu, Zhuoming Yu, Shichao Lv, Jianrong Qiu, Shifeng Zhou","doi":"10.1002/adma.202412661","DOIUrl":null,"url":null,"abstract":"<p><p>The scintillator is the most crucial component in the high-energy ray detection system. The available scintillators suffer from the insurmountable drawbacks including poor shaping ability for single crystal and ceramic and low efficiency for glass. Here, a glass composite scintillator is proposed from a congruent crystallization system which possesses both excellent processability and high scintillating yield. It can be fabricated into diverse shapes and sizes including the bulk and tiny fiber. Benefitting from the unique compositing combination with a high crystallization ratio, the glass composite exhibits a giant scintillating light yield of ≈26,000 photons per MeV. The practical application for X-ray imaging is demonstrated and a high spatial resolution of 12 l p mm<sup>-1</sup> is achieved. Furthermore, the fiber derived detector is built and the remote and micro-area detection is realized. These findings not only represent a novel design concept for the development of glass composite but also suggest a great step for expanding the scope of scintillators.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412661","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The scintillator is the most crucial component in the high-energy ray detection system. The available scintillators suffer from the insurmountable drawbacks including poor shaping ability for single crystal and ceramic and low efficiency for glass. Here, a glass composite scintillator is proposed from a congruent crystallization system which possesses both excellent processability and high scintillating yield. It can be fabricated into diverse shapes and sizes including the bulk and tiny fiber. Benefitting from the unique compositing combination with a high crystallization ratio, the glass composite exhibits a giant scintillating light yield of ≈26,000 photons per MeV. The practical application for X-ray imaging is demonstrated and a high spatial resolution of 12 l p mm-1 is achieved. Furthermore, the fiber derived detector is built and the remote and micro-area detection is realized. These findings not only represent a novel design concept for the development of glass composite but also suggest a great step for expanding the scope of scintillators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效高能射线探测的同形玻璃复合闪烁体
闪烁体是高能射线探测系统中最关键的部件。现有的闪烁体存在难以克服的缺点,包括单晶和陶瓷闪烁体的成型能力差,玻璃闪烁体的效率低。本文提出了一种玻璃复合闪烁体,该闪烁体采用了同向结晶体系,具有出色的可加工性和高闪烁率。它可以制成各种形状和尺寸,包括块状和微小纤维状。得益于与高结晶比的独特复合组合,这种玻璃复合材料的闪烁光产率高达 ≈26,000 光子/兆电子伏。在 X 射线成像方面的实际应用得到了验证,并实现了 12 l p mm-1 的高空间分辨率。此外,还建立了光纤衍生探测器,实现了远程和微区探测。这些发现不仅代表了开发玻璃复合材料的新颖设计理念,而且为扩大闪烁体的应用范围迈出了一大步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Engineering Strain-Defects to Enhance Enzymatic Therapy and Induce Ferroptosis. Evidence of Quasi-Na Metallic Clusters in Sodium Ion Batteries through In Situ X-Ray Diffraction. Advances in Spectro-Microscopy Methods and their Applications in the Characterization of Perovskite Materials. Congruent Glass Composite Scintillator for Efficient High-Energy Ray Detection. Constructing an Active Sulfur-Vacancy-Rich Surface for Selective *CH3-CH3 Coupling in CO2-to-C2H6 Conversion With 92% Selectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1