Artemisinin and salinomycin co-loaded nanozymes to boost cascade ROS accumulation for augmented tumor ferroptosis.

IF 5.4 2区 医学 Q1 BIOPHYSICS Colloids and Surfaces B: Biointerfaces Pub Date : 2024-11-02 DOI:10.1016/j.colsurfb.2024.114352
MengXiao Liu, Ying Lu, JunSheng Zhao, YanZhao Yin, Jin Cao, Lin Wu, Song Shen
{"title":"Artemisinin and salinomycin co-loaded nanozymes to boost cascade ROS accumulation for augmented tumor ferroptosis.","authors":"MengXiao Liu, Ying Lu, JunSheng Zhao, YanZhao Yin, Jin Cao, Lin Wu, Song Shen","doi":"10.1016/j.colsurfb.2024.114352","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, which depends on iron ions to generate reactive oxygen species (ROS), has been proved to be an effective strategy for cancer therapy. However, cells will initiate different programs, including reducing iron uptake and storing excess iron in ferritin, to lower the intracellular iron concentration. In this work, we reported a simple, one-pot method to synthesize bovine serum albumin stabilized MnFe<sub>2</sub>O<sub>4</sub> nanoparticles (MnFe<sub>2</sub>O<sub>4</sub>@BSA NPs) for ferroptosis therapy of cancer. Artemisinin (ART) and salinomycin (Sali), which could induce the degradation of ferritin and enhance the uptake by increasing binding protein IRP2 and transferrin receptor, were loaded onto the MnFe<sub>2</sub>O<sub>4</sub>@BSA NPs to strengthen the killing effect. The prepared MnFe<sub>2</sub>O<sub>4</sub>@BSA-ART/Sali (MnFe<sub>2</sub>O<sub>4</sub>/ART/Sali) NPs could significantly increase the cellular iron concertation, enhancing the ROS generation in cells. After intravenous injection, the MnFe<sub>2</sub>O<sub>4</sub>/ART/Sali NPs showed superior anti-tumor effects, with a tumor inhibition rate of 67.65 %. Hence, the hybrid nanocomposite indicated the combined effect of MnFe<sub>2</sub>O<sub>4</sub>, ART, and Sali, providing a platform to enhance ferroptosis therapy of cancer.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114352","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis, which depends on iron ions to generate reactive oxygen species (ROS), has been proved to be an effective strategy for cancer therapy. However, cells will initiate different programs, including reducing iron uptake and storing excess iron in ferritin, to lower the intracellular iron concentration. In this work, we reported a simple, one-pot method to synthesize bovine serum albumin stabilized MnFe2O4 nanoparticles (MnFe2O4@BSA NPs) for ferroptosis therapy of cancer. Artemisinin (ART) and salinomycin (Sali), which could induce the degradation of ferritin and enhance the uptake by increasing binding protein IRP2 and transferrin receptor, were loaded onto the MnFe2O4@BSA NPs to strengthen the killing effect. The prepared MnFe2O4@BSA-ART/Sali (MnFe2O4/ART/Sali) NPs could significantly increase the cellular iron concertation, enhancing the ROS generation in cells. After intravenous injection, the MnFe2O4/ART/Sali NPs showed superior anti-tumor effects, with a tumor inhibition rate of 67.65 %. Hence, the hybrid nanocomposite indicated the combined effect of MnFe2O4, ART, and Sali, providing a platform to enhance ferroptosis therapy of cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青蒿素和盐霉素共载纳米酶促进级联 ROS 积累,从而增强肿瘤铁变态反应。
铁变态反应依赖于铁离子产生活性氧(ROS),已被证明是一种有效的癌症治疗策略。然而,细胞会启动不同的程序,包括减少铁的吸收和将多余的铁储存在铁蛋白中,以降低细胞内的铁浓度。在这项工作中,我们报道了一种简单的一锅法合成牛血清白蛋白稳定的 MnFe2O4 纳米粒子(MnFe2O4@BSA NPs),用于癌症的铁氧化疗法。青蒿素(ART)和盐霉素(Sali)可诱导铁蛋白降解,并通过增加结合蛋白 IRP2 和转铁蛋白受体来提高铁蛋白的摄取量。制备的MnFe2O4@BSA-ART/Sali(MnFe2O4/ART/Sali)NPs能显著增加细胞中铁的协同作用,增强细胞中ROS的生成。经静脉注射后,MnFe2O4/ART/Sali NPs显示出卓越的抗肿瘤效果,肿瘤抑制率达67.65%。因此,该混合纳米复合材料显示了 MnFe2O4、ART 和 Sali 的联合作用,为加强癌症的铁氧化疗法提供了一个平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
期刊最新文献
Artemisinin and salinomycin co-loaded nanozymes to boost cascade ROS accumulation for augmented tumor ferroptosis. Electrospun nanofibrous scaffolds reinforced with therapeutic lithium/manganese-doped calcium phosphates: Advancing skin cancer therapy through apoptosis induction. Multifunctional injectable oxidized sodium alginate/carboxymethyl chitosan hydrogel for rapid hemostasis. Nickel-doped cuprous oxide nanocauliflowers with specific peroxidase-like activity for sensitive detection of hydrogen peroxide and uric acid. Translocation mechanism of anticancer drugs through membrane with the assistance of graphene quantum dot.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1