Saeid Moghassemi, Arezoo Dadashzadeh, Saba Nikanfar, Pejman Ghaffari-Bohlouli, Paulo Eduardo Narcizo de Souza, Amin Shavandi, Ricardo Bentes de Azevedo, Christiani A Amorim
{"title":"Metallic-based phthalocyanine nanoemulsions for photodynamic purging of ovarian tissue in leukemia patients.","authors":"Saeid Moghassemi, Arezoo Dadashzadeh, Saba Nikanfar, Pejman Ghaffari-Bohlouli, Paulo Eduardo Narcizo de Souza, Amin Shavandi, Ricardo Bentes de Azevedo, Christiani A Amorim","doi":"10.1016/j.colsurfb.2024.114338","DOIUrl":null,"url":null,"abstract":"<p><p>For cancer patients with a high risk of ovarian tissue metastasis, ovarian autotransplantation is not advised due to the potential spread of malignant cells. Ex vivo purging of ovarian fragments may offer a more suitable alternative for fertility restoration. Eradicating malignant cells should be done selectively without affecting follicles or ovarian stromal cells (SCs). As a clinically licensed method, photodynamic therapy (PDT) is a minimally invasive treatment to destroy cancer cells. This study evaluates the effectiveness of nanoemulsions (NE) containing two phthalocyanine photosensitizers; aluminum (III) phthalocyanine (AlPc) and zinc (II) phthalocyanine (ZnPc) in eliminating cancer cells. Human leukemic malignant (HL-60) and ovarian stromal cells (SCs) were treated with AlPc/ZnPc loaded NEs with or without diode laser irradiation. HL-60 leukemia cells in 2D culture were eliminated by treatment with 10 nM AlPc-NE or 0.1 µM ZnPc-NE, while no toxicity was observed in SCs. In 3D culture models, although the cells showed more resistance to the NEs as a result of limited oxygen and photosensitizer penetration, the treatment remained selective for cancer cells. These approaches have the potential to eliminate malignant cells from ovarian tissue fragments.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114338"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114338","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
For cancer patients with a high risk of ovarian tissue metastasis, ovarian autotransplantation is not advised due to the potential spread of malignant cells. Ex vivo purging of ovarian fragments may offer a more suitable alternative for fertility restoration. Eradicating malignant cells should be done selectively without affecting follicles or ovarian stromal cells (SCs). As a clinically licensed method, photodynamic therapy (PDT) is a minimally invasive treatment to destroy cancer cells. This study evaluates the effectiveness of nanoemulsions (NE) containing two phthalocyanine photosensitizers; aluminum (III) phthalocyanine (AlPc) and zinc (II) phthalocyanine (ZnPc) in eliminating cancer cells. Human leukemic malignant (HL-60) and ovarian stromal cells (SCs) were treated with AlPc/ZnPc loaded NEs with or without diode laser irradiation. HL-60 leukemia cells in 2D culture were eliminated by treatment with 10 nM AlPc-NE or 0.1 µM ZnPc-NE, while no toxicity was observed in SCs. In 3D culture models, although the cells showed more resistance to the NEs as a result of limited oxygen and photosensitizer penetration, the treatment remained selective for cancer cells. These approaches have the potential to eliminate malignant cells from ovarian tissue fragments.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.