{"title":"A holocellulose air filter with highly efficient formaldehyde adsorption prepared via low temperature pulping and partial dissolving from corn stalks.","authors":"Xingyu Wang, Qiuyue Hu, Xueping Wang, Xiaoran Zhang, Tian Si, Xin Gao, Lincai Peng, Keli Chen, Heng Zhang","doi":"10.1016/j.ijbiomac.2024.137164","DOIUrl":null,"url":null,"abstract":"<p><p>Emissions of particulate matter (PM) originating from industrial and agricultural incineration had emerged as a significant public health concern. Furthermore, the considerable annual production of straw remains underutilized, particularly in China. In this study, we proposed a novel approach for holocellulose air filter production from corn stalks via low-temperature anthraquinone pulping, partial dissolving, and high-speed shear-induced regeneration. About 61.40-78.23 % of hemicellulose in corn stalks was retained in holocellulose, furthermore, the delignification rate was up to 81.63-92.51 % after low temperature (<100 °C) alkaline exactment. Subsequently, holocellulose air filters (RHF) was prepared through regeneration with high-speed shear induced (25,000 rpm) and freeze-drying. The final air filters contained approximately 8.56-12.4 % hemicellulose, exhibiting a substantial adsorption capacity for low molecules such as formaldehyde. The results revealed remarkably low PM<sub>2.5</sub> penetration ratio (0.12 %) and pressure drop (14.3 Pa) of the air filter, while exhibiting a remarkable formaldehyde adsorption capacity of 54.5 mg/g. Moreover, the characters of high crystallinity index and robust micro/nano-structure of regenerated cellulose were obtained. This study introduced an innovative and facile strategy for gaseous formaldehyde adsorption and introduced novel solutions for agricultural waste utilization.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Emissions of particulate matter (PM) originating from industrial and agricultural incineration had emerged as a significant public health concern. Furthermore, the considerable annual production of straw remains underutilized, particularly in China. In this study, we proposed a novel approach for holocellulose air filter production from corn stalks via low-temperature anthraquinone pulping, partial dissolving, and high-speed shear-induced regeneration. About 61.40-78.23 % of hemicellulose in corn stalks was retained in holocellulose, furthermore, the delignification rate was up to 81.63-92.51 % after low temperature (<100 °C) alkaline exactment. Subsequently, holocellulose air filters (RHF) was prepared through regeneration with high-speed shear induced (25,000 rpm) and freeze-drying. The final air filters contained approximately 8.56-12.4 % hemicellulose, exhibiting a substantial adsorption capacity for low molecules such as formaldehyde. The results revealed remarkably low PM2.5 penetration ratio (0.12 %) and pressure drop (14.3 Pa) of the air filter, while exhibiting a remarkable formaldehyde adsorption capacity of 54.5 mg/g. Moreover, the characters of high crystallinity index and robust micro/nano-structure of regenerated cellulose were obtained. This study introduced an innovative and facile strategy for gaseous formaldehyde adsorption and introduced novel solutions for agricultural waste utilization.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.