Ultrasensitive In2O3-Based Nanoflakes for Lung Cancer Diagnosis and the Sensing Mechanism Investigated by Operando Spectroscopy.

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2024-11-06 DOI:10.1021/acssensors.4c01298
Ye Cheng, Raquel Portela, Pingli Wang, Pingwei Liu, Yupeng Mao, Khak Ho Lim, Jieyuan Zheng, Xuan Yang, Gensheng Zhang, Liren Ding, Wen-Jun Wang, Bo-Geng Li, Miguel A Bañares, Qingyue Wang
{"title":"Ultrasensitive In<sub>2</sub>O<sub>3</sub>-Based Nanoflakes for Lung Cancer Diagnosis and the Sensing Mechanism Investigated by <i>Operando</i> Spectroscopy.","authors":"Ye Cheng, Raquel Portela, Pingli Wang, Pingwei Liu, Yupeng Mao, Khak Ho Lim, Jieyuan Zheng, Xuan Yang, Gensheng Zhang, Liren Ding, Wen-Jun Wang, Bo-Geng Li, Miguel A Bañares, Qingyue Wang","doi":"10.1021/acssensors.4c01298","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid gas sensing with high sensitivity and selectivity is pivotal in advanced production, in smart living, and increasingly in medical health applications. This study presents a novel Pt@InNiO<sub><i>x</i></sub> nanoflake isoprene sensor that achieves an exceptionally low limit of detection (LOD) at 2 ppb, the lowest reported for isoprene sensors to date. Notably, it exhibits high selectivity and remarkable antihumidity capacity, thus meeting the stringent requirements for lung cancer screening. To unravel the sensing mechanism, we fabricate an <i>operando</i> DRIFTS-Raman cell coupled to online electrical measurements. It reveals that the ultrasensitive performance of Pt@InNiO<sub><i>x</i></sub> nanoflakes stems from the activated conjugated structure of isoprene by Pt nanoclusters and from the enhanced isoprene adsorption and electron interaction due to the nanoflake morphology. The <i>p-n</i> junction constructed by doping Ni maintains Fermi level equilibrium, shielding it from humidity interference. Practically, we integrate these ultrasensitive Pt@InNiO<sub><i>x</i></sub> nanoflakes into a miniaturized portable electronic device that successfully distinguishes lung cancer patients with expiratory isoprene below 40 ppb, from the healthy population with isoprene above 60 ppb, enabling an accurate diagnosis in clinics. Our work not only provides a breakthrough in low-cost, noninvasive cancer screening through breath analysis but also advances the rational design of cutting-edge gas sensing materials.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c01298","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid gas sensing with high sensitivity and selectivity is pivotal in advanced production, in smart living, and increasingly in medical health applications. This study presents a novel Pt@InNiOx nanoflake isoprene sensor that achieves an exceptionally low limit of detection (LOD) at 2 ppb, the lowest reported for isoprene sensors to date. Notably, it exhibits high selectivity and remarkable antihumidity capacity, thus meeting the stringent requirements for lung cancer screening. To unravel the sensing mechanism, we fabricate an operando DRIFTS-Raman cell coupled to online electrical measurements. It reveals that the ultrasensitive performance of Pt@InNiOx nanoflakes stems from the activated conjugated structure of isoprene by Pt nanoclusters and from the enhanced isoprene adsorption and electron interaction due to the nanoflake morphology. The p-n junction constructed by doping Ni maintains Fermi level equilibrium, shielding it from humidity interference. Practically, we integrate these ultrasensitive Pt@InNiOx nanoflakes into a miniaturized portable electronic device that successfully distinguishes lung cancer patients with expiratory isoprene below 40 ppb, from the healthy population with isoprene above 60 ppb, enabling an accurate diagnosis in clinics. Our work not only provides a breakthrough in low-cost, noninvasive cancer screening through breath analysis but also advances the rational design of cutting-edge gas sensing materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肺癌诊断的超灵敏 In2O3 纳米薄片及其运算多光谱传感机制研究
具有高灵敏度和高选择性的快速气体传感在先进生产、智能生活以及越来越多的医疗健康应用中至关重要。本研究提出了一种新型 Pt@InNiOx 纳米片异戊二烯传感器,其检测限(LOD)极低,仅为 2 ppb,是迄今为止所报道的异戊二烯传感器中最低的。值得注意的是,它还具有高选择性和显著的防潮能力,从而满足了肺癌筛查的严格要求。为了揭示其传感机制,我们制作了一个与在线电学测量相结合的操作性 DRIFTS-Raman 单元。结果表明,Pt@InNiOx 纳米片的超灵敏性能源于铂纳米团簇激活了异戊二烯的共轭结构,以及纳米片形态增强了对异戊二烯的吸附和电子相互作用。通过掺杂镍构建的 p-n 结保持了费米级平衡,使其免受湿度干扰。在实践中,我们将这些超灵敏的 Pt@InNiOx 纳米片集成到一个微型便携式电子设备中,该设备可成功区分呼气异戊二烯低于 40 ppb 的肺癌患者和异戊二烯高于 60 ppb 的健康人群,从而在临床上进行准确诊断。我们的工作不仅在通过呼气分析进行低成本、无创癌症筛查方面取得了突破,还推动了尖端气体传感材料的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Argonaute-Based Nucleic Acid Detection Technology: Advantages, Current Status, Challenges, and Perspectives BRET Nano Q-Body: A Nanobody-Based Ratiometric Bioluminescent Immunosensor for Point-of-Care Testing Combinatorial Pattern Response of Bioelectronic Nose for the Detection of Real Nerve Agents Monolayer Amphiphiles Hydrophobicize MoS2-Mediated Real-Time Water Removal for Efficient Waterproof Hydrogen Detection An Underwater Methane Sensor Based on Laser Spectroscopy in a Hollow Core Optical Fiber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1