Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-11-06 DOI:10.1002/advs.202410015
Yang Rong, De Yu, Xin Zhang, Tao Wang, Jie Wang, Yuheng Li, Tongpeng Zhao, Ruiqin He, Yuxin Gao, Can Huang, Shumin Xiao, Jingkai Qin, Sai Bai, Huihui Zhu, Ao Liu, Yimu Chen, Qinghai Song
{"title":"Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions.","authors":"Yang Rong, De Yu, Xin Zhang, Tao Wang, Jie Wang, Yuheng Li, Tongpeng Zhao, Ruiqin He, Yuxin Gao, Can Huang, Shumin Xiao, Jingkai Qin, Sai Bai, Huihui Zhu, Ao Liu, Yimu Chen, Qinghai Song","doi":"10.1002/advs.202410015","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite thin-film transistors (TFTs) simultaneously possessing exceptional carrier transport capabilities, nonvolatile memory effects, and photosensitivity have recently attracted attention in fields of both complementary circuits and neuromorphic computing. Despite continuous performance improvements through additive and composition engineering of the channel materials, the equally crucial dielectric/channel interfaces of perovskite TFTs have remained underexplored. Here, it is demonstrated that engineering the dielectric/channel interface in 2D tin perovskite TFTs not only enhances the performance and operational stability for their utilization in complementary circuits but also enables efficient synaptic behaviors (optical information sensing and storage) under an extremely low operating voltage of -1 mV at the same time. The interface-engineered TFT arrays operating at -1 mV are then demonstrated as the preprocessing hardware for neuromorphic visions with pattern recognition accuracy of 92.2% and long-term memory capability. Such a low operating voltage provides operational feasibility to the design of large-scale-integrated and wearable/implantable neuromorphic hardware.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410015","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite thin-film transistors (TFTs) simultaneously possessing exceptional carrier transport capabilities, nonvolatile memory effects, and photosensitivity have recently attracted attention in fields of both complementary circuits and neuromorphic computing. Despite continuous performance improvements through additive and composition engineering of the channel materials, the equally crucial dielectric/channel interfaces of perovskite TFTs have remained underexplored. Here, it is demonstrated that engineering the dielectric/channel interface in 2D tin perovskite TFTs not only enhances the performance and operational stability for their utilization in complementary circuits but also enables efficient synaptic behaviors (optical information sensing and storage) under an extremely low operating voltage of -1 mV at the same time. The interface-engineered TFT arrays operating at -1 mV are then demonstrated as the preprocessing hardware for neuromorphic visions with pattern recognition accuracy of 92.2% and long-term memory capability. Such a low operating voltage provides operational feasibility to the design of large-scale-integrated and wearable/implantable neuromorphic hardware.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于超低电压神经形态视觉的过氧化物薄膜晶体管。
最近,同时具有优异载流子传输能力、非易失性记忆效应和光敏性的透辉石薄膜晶体管(TFT)在互补电路和神经形态计算领域引起了广泛关注。尽管通过沟道材料的添加剂和成分工程不断提高了性能,但对包晶TFT同样重要的介质/沟道界面的研究仍然不足。本文证明,对二维锡包晶 TFT 的介质/沟道界面进行工程设计,不仅能提高其性能和工作稳定性,以便用于互补电路,还能在 -1 mV 的超低工作电压下实现高效的突触行为(光学信息传感和存储)。界面工程 TFT 阵列的工作电压为 -1 mV,作为神经形态视觉的预处理硬件,其模式识别准确率高达 92.2%,并具有长期记忆能力。如此低的工作电压为设计大规模集成和可穿戴/植入式神经形态硬件提供了操作可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Black Phosphorus Tagged Responsive Strontium Hydrogel Particles for Bone Defect Repair. Bone-Targeted Fluoropeptide Nanoparticle Inhibits NF-κB Signaling to Treat Osteosarcoma and Tumor-Induced Bone Destruction. Identifying Multiomic Signatures of X-Linked Retinoschisis-Derived Retinal Organoids and Mice Harboring Patient-Specific Mutation Using Spatiotemporal Single-Cell Transcriptomics. Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions. Pyroptosis-Inducing Biomaterials Pave the Way for Transformative Antitumor Immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1