Biomimetic Elastic Single-Atom Protrusions Enhance Ammonia Electrosynthesis.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-06 DOI:10.1002/anie.202418095
Yuntong Sun, Yin Huang, Fanglei Yao, Meng Tian, Jin Wang, Wenjun Fan, Junwu Zhu, Jong-Min Lee
{"title":"Biomimetic Elastic Single-Atom Protrusions Enhance Ammonia Electrosynthesis.","authors":"Yuntong Sun, Yin Huang, Fanglei Yao, Meng Tian, Jin Wang, Wenjun Fan, Junwu Zhu, Jong-Min Lee","doi":"10.1002/anie.202418095","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic nitrogen (N2) reduction reaction (eNRR) is a promising route for sustainable ammonia (NH3) generation, but the eNRR efficiency is dramatically impeded by the sluggish reaction kinetics. Herein, inspired by the dynamic extension-contraction of sea anemone tentacles in response to environmental changes, we propose a biomimetic elastic Mo single-atom protrusion on vanadium oxide support (pSA Mo/VOH) electrocatalyst featuring a symmetry-breaking Mo site and an elastic Mo-O4 pyramid for efficient eNRR. In-situ spectroscopy and theoretical calculations reveal that the protruding Mo-induced symmetry-breaking structure optimizes the d electron filling of Mo, enhancing the back-donation to the π* antibonding orbital, effectively polarizing the N≡N bond and reducing the barrier from *N2 to *N2H. Notably, the elastic Mo-O4 pyramidal structure of pSA Mo provides a dynamic Mo-O microenvironment during continuous eNRR processes. This optimizes the electronic structure of the Mo sites based on different reaction intermediates, enhancing the adsorption of various N intermediates and maintaining low barriers throughout the six-step hydrogenation process. Consequently, the elastic pSA Mo/VOH exhibits an excellent NH3 yield rate of 50.71 ± 1.12 μg h-1 mg-1 and a Faradaic efficiency of 35.38 ± 1.03%, outperforming most electrocatalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418095","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic nitrogen (N2) reduction reaction (eNRR) is a promising route for sustainable ammonia (NH3) generation, but the eNRR efficiency is dramatically impeded by the sluggish reaction kinetics. Herein, inspired by the dynamic extension-contraction of sea anemone tentacles in response to environmental changes, we propose a biomimetic elastic Mo single-atom protrusion on vanadium oxide support (pSA Mo/VOH) electrocatalyst featuring a symmetry-breaking Mo site and an elastic Mo-O4 pyramid for efficient eNRR. In-situ spectroscopy and theoretical calculations reveal that the protruding Mo-induced symmetry-breaking structure optimizes the d electron filling of Mo, enhancing the back-donation to the π* antibonding orbital, effectively polarizing the N≡N bond and reducing the barrier from *N2 to *N2H. Notably, the elastic Mo-O4 pyramidal structure of pSA Mo provides a dynamic Mo-O microenvironment during continuous eNRR processes. This optimizes the electronic structure of the Mo sites based on different reaction intermediates, enhancing the adsorption of various N intermediates and maintaining low barriers throughout the six-step hydrogenation process. Consequently, the elastic pSA Mo/VOH exhibits an excellent NH3 yield rate of 50.71 ± 1.12 μg h-1 mg-1 and a Faradaic efficiency of 35.38 ± 1.03%, outperforming most electrocatalysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿生弹性单原子突起增强了氨的电合成。
电催化氮气(N2)还原反应(eNRR)是可持续生成氨气(NH3)的一条前景广阔的途径,但反应动力学迟缓极大地阻碍了 eNRR 的效率。在此,我们受海葵触手随环境变化而动态伸缩的启发,提出了一种仿生弹性钼单原子突起氧化钒载体(pSA Mo/VOH)电催化剂,该催化剂具有打破对称性的钼位点和弹性钼-O4金字塔,可实现高效的 eNRR。原位光谱和理论计算显示,突出的钼诱导对称性破缺结构优化了钼的 d 电子填充,增强了对π*反键轨道的反向捐赠,有效地极化了 N≡N 键,降低了从 *N2 到 *N2H 的势垒。值得注意的是,在连续的 eNRR 过程中,pSA Mo 的弹性 Mo-O4 金字塔结构提供了一个动态的 Mo-O 微环境。这就根据不同的反应中间产物优化了钼位点的电子结构,增强了对各种 N 中间产物的吸附,并在整个六步氢化过程中保持了较低的壁垒。因此,弹性 pSA Mo/VOH 的 NH3 产率高达 50.71 ± 1.12 μg h-1 mg-1,法拉第效率为 35.38 ± 1.03%,优于大多数电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Bioinspired synthesis of cucurbalsaminones B and C. Biomimetic Elastic Single-Atom Protrusions Enhance Ammonia Electrosynthesis. Dicyclopenta[4,3,2,1-cde:4',3',2',1'-pqr]-peri-tetracene: Synthesis and An Example of Annulene-Within-An-Annulene Aromaticity in Different Redox States. Enhancing the Cumulene Character of One-Dimensional Acetylene-Based Systems by Stimuli-Induced Planarization of Their Two Pro-diradicaloid Cyclopenta[h,i]aceanthrylene Units. High-Entropy Electrolyte Driven by Multi-Solvation Structures for Long-Lifespan Aqueous Zinc Metal Pouch Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1