{"title":"Dengue and chikungunya virus dynamics, identification, and monitoring in wastewater","authors":"Tiyasa Haldar, Poonam Katarmal, Bishnudeo Roy, Santosh Koratkar","doi":"10.1007/s10661-024-13341-3","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring wastewater is an effective strategy for supporting clinical surveillance for viral infections. Wastewater monitoring, also known as wastewater-based epidemiology (WBE), uses existing wastewater collection networks to obtain a composite sample of a population that can be used to predict disease dynamics in a specific area. Viruses such as dengue and chikungunya are primarily transmitted through the bites of infected <i>Aedes</i> mosquito species. The prevalence of the <i>Aedes</i> mosquito in tropical and subtropical regions makes these diseases a serious threat to public health. Employing wastewater surveillance, monitoring, and regulating the spread of diseases like dengue and chikungunya—notably caused by mosquitoes—has been recommended. However, understanding the dynamics of viral release and its persistence in wastewater is critical for monitoring purposes. Although methods for recovering RNA for some viruses from wastewater have been developed, the same approach does not work equally well for viruses such as dengue and chikungunya due to low levels of viral RNA and susceptibility to degradation. As a result, a tailored approach to recovering these viruses from wastewater is required. This review summarizes viral release from infected hosts, its dynamics, and approaches for dengue and chikungunya wastewater surveillance. The review also identifies existing knowledge gaps in viral persistence in wastewater and recovery.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"196 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13341-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring wastewater is an effective strategy for supporting clinical surveillance for viral infections. Wastewater monitoring, also known as wastewater-based epidemiology (WBE), uses existing wastewater collection networks to obtain a composite sample of a population that can be used to predict disease dynamics in a specific area. Viruses such as dengue and chikungunya are primarily transmitted through the bites of infected Aedes mosquito species. The prevalence of the Aedes mosquito in tropical and subtropical regions makes these diseases a serious threat to public health. Employing wastewater surveillance, monitoring, and regulating the spread of diseases like dengue and chikungunya—notably caused by mosquitoes—has been recommended. However, understanding the dynamics of viral release and its persistence in wastewater is critical for monitoring purposes. Although methods for recovering RNA for some viruses from wastewater have been developed, the same approach does not work equally well for viruses such as dengue and chikungunya due to low levels of viral RNA and susceptibility to degradation. As a result, a tailored approach to recovering these viruses from wastewater is required. This review summarizes viral release from infected hosts, its dynamics, and approaches for dengue and chikungunya wastewater surveillance. The review also identifies existing knowledge gaps in viral persistence in wastewater and recovery.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.