{"title":"Graphene oxide, starch, and kraft lignin bio-nanocomposite controlled-release phosphorus fertilizer: Effect on P management and maize growth.","authors":"Badr-Eddine Channab, Fatima Tayi, Meryem Aqlil, Adil Akil, Younes Essamlali, Achraf Chakir, Mohamed Zahouily","doi":"10.1016/j.ijbiomac.2024.137190","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the synthesis and practical application of bio-nanocomposite films made from a mixture of starch (ST) and Kraft lignin (KL) with graphene oxide (GO) nanoparticles. FTIR, XRD, Raman, SEM, and TEM analysis confirmed the synthesis's success of GO. The bio-nanocomposites were used as advanced coatings for triple superphosphate (TSP) fertilizers, and their implications for maize (Zea mays L.) plant growth were examined. Incorporating GO into the composite matrix is a significant accomplishment of this study, as demonstrated by the noticeable changes observed in the FTIR spectra, indicating consequent structural changes. Morphological analyses conducted by SEM reveal changes in the surface characteristics of the ST/KL films, providing essential information about the structural details of the bio-nanocomposite. The utilization of precision-coated TSP fertilizers leads to a significant enhancement in mechanical strength, as demonstrated by the improved crush resistance. Furthermore, these formulations guarantee a gradual release of phosphorus, showcasing their potential for efficient nutrient management in agricultural settings. The study examines the practical application of coated TSP fertilizers in agriculture and their positive effects on various growth parameters of Maize (Zea mays L.) plants. Using these fertilizers promotes sustainable and efficient agricultural practices, contributing to developing innovative agrochemical solutions.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137190","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the synthesis and practical application of bio-nanocomposite films made from a mixture of starch (ST) and Kraft lignin (KL) with graphene oxide (GO) nanoparticles. FTIR, XRD, Raman, SEM, and TEM analysis confirmed the synthesis's success of GO. The bio-nanocomposites were used as advanced coatings for triple superphosphate (TSP) fertilizers, and their implications for maize (Zea mays L.) plant growth were examined. Incorporating GO into the composite matrix is a significant accomplishment of this study, as demonstrated by the noticeable changes observed in the FTIR spectra, indicating consequent structural changes. Morphological analyses conducted by SEM reveal changes in the surface characteristics of the ST/KL films, providing essential information about the structural details of the bio-nanocomposite. The utilization of precision-coated TSP fertilizers leads to a significant enhancement in mechanical strength, as demonstrated by the improved crush resistance. Furthermore, these formulations guarantee a gradual release of phosphorus, showcasing their potential for efficient nutrient management in agricultural settings. The study examines the practical application of coated TSP fertilizers in agriculture and their positive effects on various growth parameters of Maize (Zea mays L.) plants. Using these fertilizers promotes sustainable and efficient agricultural practices, contributing to developing innovative agrochemical solutions.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.