Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back
{"title":"Fabrication and Enhanced Flexibility of Starch-Based Cross-Linked Films.","authors":"Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back","doi":"10.1021/acs.biomac.4c01172","DOIUrl":null,"url":null,"abstract":"<p><p>The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01172","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.