Fabrication and Enhanced Flexibility of Starch-Based Cross-Linked Films.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2024-11-06 DOI:10.1021/acs.biomac.4c01172
Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back
{"title":"Fabrication and Enhanced Flexibility of Starch-Based Cross-Linked Films.","authors":"Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back","doi":"10.1021/acs.biomac.4c01172","DOIUrl":null,"url":null,"abstract":"<p><p>The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01172","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淀粉基交联薄膜的制作与柔韧性增强
随着可持续材料的发展,人们对淀粉这种可再生、可生物降解的聚合物产生了浓厚的兴趣。然而,原生淀粉固有的脆性、亲水性和缺乏热塑性限制了它在材料科学领域的应用。本研究通过将原生淀粉转化为二甲醛淀粉(DAS)并通过亚胺键与聚醚二胺交联,解决了原生淀粉的局限性。研究考察了 Jeffamine 的分子量(D-2000、D-400 和 D-230)和摩尔比对淀粉基薄膜的机械、热和结构特性的影响。交联的 DAS/Js 薄膜在柔韧性和韧性方面都有显著提高。具体来说,摩尔比为 0.03 的 DAS/J2000 拉伸强度达到 62.9 兆帕。相比之下,摩尔比为 0.5 的 DAS/J400 的断裂伸长率为 126.2%,这表明交联密度和链流动性之间达到了平衡。X 射线衍射(XRD)分析表明,随着交联度的增加,结晶度降低,分子堆积更紧密。动态机械分析(DMA)表明,随着摩尔比的增加,Tg 有所下降,这反映了分子流动性的增强。这些结果强调了优化交联条件生产淀粉基薄膜的潜力,其特性有助于开发可持续生物聚合物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Endothelium-Inspired Hemocompatible Silicone Surfaces: An Elegant Balance between Antifouling Properties and Endothelial Cell Selectivity. From Cellulose Solutions to Aerogels and Xerogels: Controlling Properties for Drug Delivery. Exploiting Materials Binding Peptides for the Organization of Resilient Biomolecular Constructs. High-Throughput Synthesis and Evaluation of Antiviral Copolymers for Enveloped Respiratory Viruses. Comparative In Vivo Biocompatibility of Cellulose-Derived and Synthetic Meshes in Subcutaneous Transplantation Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1