Synthesis and characterization of p-CuO/n-ZnO heterostructured composite thin films for the detection of formaldehyde gas.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-11-15 DOI:10.1088/1361-648X/ad8f23
Sarika Yadav, P Nagaraju, Sameena Begum, M Swathi, Kurugundla Gopi Krishna, J K Ojha, G R Turpu
{"title":"Synthesis and characterization of p-CuO/n-ZnO heterostructured composite thin films for the detection of formaldehyde gas.","authors":"Sarika Yadav, P Nagaraju, Sameena Begum, M Swathi, Kurugundla Gopi Krishna, J K Ojha, G R Turpu","doi":"10.1088/1361-648X/ad8f23","DOIUrl":null,"url":null,"abstract":"<p><p>We report the synthesis and characterization of pure CuO and CuO-ZnO nanostructured composite thin films sprayed on particle-free glass substrates using chemical spray pyrolysis method. The films were systematically analyzed through microstructural, morphological, chemical, and gas-sensing studies. X-ray diffraction (XRD) studies confirmed the polycrystalline nature of the films, with a predominant monoclinic phase along the (002) direction. Key structural parameters, such as crystallite size, dislocation density, strain, and the number of crystallites per unit area, were reported from XRD analysis. Field emission scanning electron microscopy revealed a bundled-like morphology witha uniform particle distribution, enhancing the surface area for effective gas interaction. X-ray photoelectron spectroscopy results indicated that Cu and Zn ions existed predominantly in the 2+ oxidation state, contributing to the films' reactivity. Significantly, the gas sensing studies were investigated with static liquid distribution method, highlighting the remarkable performance of the 30 wt.% CuO-ZnO composite thin film. This composite exhibited a substantial response to 5 ppm formaldehyde at ambient conditions, showing a recovery time of 22 s and a response time of 15 s. These findings underscore the potential of CuO-ZnO composites for efficient formaldehyde gas sensing applications, marking a notable advancement in the field of environmental monitoring.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad8f23","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We report the synthesis and characterization of pure CuO and CuO-ZnO nanostructured composite thin films sprayed on particle-free glass substrates using chemical spray pyrolysis method. The films were systematically analyzed through microstructural, morphological, chemical, and gas-sensing studies. X-ray diffraction (XRD) studies confirmed the polycrystalline nature of the films, with a predominant monoclinic phase along the (002) direction. Key structural parameters, such as crystallite size, dislocation density, strain, and the number of crystallites per unit area, were reported from XRD analysis. Field emission scanning electron microscopy revealed a bundled-like morphology witha uniform particle distribution, enhancing the surface area for effective gas interaction. X-ray photoelectron spectroscopy results indicated that Cu and Zn ions existed predominantly in the 2+ oxidation state, contributing to the films' reactivity. Significantly, the gas sensing studies were investigated with static liquid distribution method, highlighting the remarkable performance of the 30 wt.% CuO-ZnO composite thin film. This composite exhibited a substantial response to 5 ppm formaldehyde at ambient conditions, showing a recovery time of 22 s and a response time of 15 s. These findings underscore the potential of CuO-ZnO composites for efficient formaldehyde gas sensing applications, marking a notable advancement in the field of environmental monitoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于检测甲醛气体的 p-CuO/n-ZnO 异质结构复合薄膜的合成与表征。
我们报告了采用化学喷雾热解方法在无颗粒玻璃基底上喷涂纯 CuO 和 CuO-ZnO 纳米结构复合薄膜的合成和表征。通过微观结构、形态、化学和气敏研究对薄膜进行了系统分析。X 射线衍射 (XRD) 研究证实了薄膜的多晶性质,沿 (002) 方向主要为单斜相。X 射线衍射分析报告了晶体尺寸、位错密度、应变和单位面积晶体数量等关键结构参数。场发射扫描电子显微镜(FESEM)显示了颗粒分布均匀的束状形态,增加了有效气体相互作用的表面积。X 射线光电子能谱(XPS)结果表明,铜和锌离子主要以 2+ 氧化态存在,从而提高了薄膜的反应活性。值得注意的是,利用静态液体分布法进行的气体传感研究凸显了 30 wt.% CuO-ZnO 复合薄膜的卓越性能。在环境条件下,这种复合材料对 5 ppm 甲醛的反应很强,恢复时间为 22 秒,反应时间为 15 秒。这些发现凸显了 CuO-ZnO 复合材料在高效甲醛气体传感应用方面的潜力,标志着环境监测领域的显著进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Exploration of quantum oscillation in antiferromagnetic Weyl semimetal GdSiAl. Quantitative Eliashberg theory of the superconductivity of thin films. Thickness-dependent structural and growth evolution in relation to dielectric relaxation behavior and correlated barrier hopping conduction mechanism in Ni0.5Co0.5Fe2O4ferrite thin films. 2025 Roadmap on 3D Nano-magnetism. Introduction to machine learning potentials for atomistic simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1