Fluorine-Doping Carbon-Modified Si/SiOx to Effectively Achieve High-Performance Anode.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-06 DOI:10.1002/smll.202407215
Zhixian You, Cheng Lin, Pingping Zheng, Jingxuan Li, Qian Feng, Jianming Tao, Yongping Zheng, Yingbin Lin, Zhigao Huang, Jiaxin Li
{"title":"Fluorine-Doping Carbon-Modified Si/SiO<sub>x</sub> to Effectively Achieve High-Performance Anode.","authors":"Zhixian You, Cheng Lin, Pingping Zheng, Jingxuan Li, Qian Feng, Jianming Tao, Yongping Zheng, Yingbin Lin, Zhigao Huang, Jiaxin Li","doi":"10.1002/smll.202407215","DOIUrl":null,"url":null,"abstract":"<p><p>To address the significant challenges encountered by silicon-based anodes in high-performance lithium-ion batteries (LIBs), including poor cycling stability, low initial coulombic efficiency (ICE), and insufficient interface compatibility, this work innovatively prepares high-performance Si/SiOx@F-C composites via in situ coating fluorine-doping carbon layer on Si/SiOx surface through high-temperature pyrolysis. The Si/SiO<sub>x</sub>@F-C electrodes exhibit superior LIB performance with a high ICE of 79%, exceeding the 71% and 43% demonstrated by Si/SiO<sub>x</sub>@C and Si/SiO<sub>x</sub>, respectively. These electrodes also show excellent rate performance, maintaining a capacity of 603 mAhg<sup>-1</sup> even under a high current density of 5000 mAg<sup>-1</sup>. Notably, the Si/SiO<sub>x</sub>@F-C electrode sustains a high reversible capacity of 829 mAh g<sup>-1</sup> at 1000 mA g<sup>-1</sup> over 1400 cycles, and 588 mAhg<sup>-1</sup> at 3000 mAg<sup>-1</sup> even over 2400 cycles, capacity retention of up to 82.12%. Comprehensive characterization and analysis of the fluorine-doped carbon layer reveal its role in enhancing electrical conductivity and preventing structural degradation of the material. The abundant fluorine in the coating layer significantly increases the LiF concentration in the solid electrolyte interface (SEI) film, improving interfacial compatibility and overall lithium storage performance. This method is both straightforward and effective, providing a promising blueprint for the broader application of Si-based anodes in advanced lithium batteries.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2407215"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407215","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the significant challenges encountered by silicon-based anodes in high-performance lithium-ion batteries (LIBs), including poor cycling stability, low initial coulombic efficiency (ICE), and insufficient interface compatibility, this work innovatively prepares high-performance Si/SiOx@F-C composites via in situ coating fluorine-doping carbon layer on Si/SiOx surface through high-temperature pyrolysis. The Si/SiOx@F-C electrodes exhibit superior LIB performance with a high ICE of 79%, exceeding the 71% and 43% demonstrated by Si/SiOx@C and Si/SiOx, respectively. These electrodes also show excellent rate performance, maintaining a capacity of 603 mAhg-1 even under a high current density of 5000 mAg-1. Notably, the Si/SiOx@F-C electrode sustains a high reversible capacity of 829 mAh g-1 at 1000 mA g-1 over 1400 cycles, and 588 mAhg-1 at 3000 mAg-1 even over 2400 cycles, capacity retention of up to 82.12%. Comprehensive characterization and analysis of the fluorine-doped carbon layer reveal its role in enhancing electrical conductivity and preventing structural degradation of the material. The abundant fluorine in the coating layer significantly increases the LiF concentration in the solid electrolyte interface (SEI) film, improving interfacial compatibility and overall lithium storage performance. This method is both straightforward and effective, providing a promising blueprint for the broader application of Si-based anodes in advanced lithium batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺氟碳改性硅/氧化硅有效实现高性能阳极
为了解决硅基阳极在高性能锂离子电池(LIB)中遇到的重大挑战,包括循环稳定性差、初始库仑效率(ICE)低和界面兼容性不足,这项工作通过高温热解在硅/硅氧表面原位涂覆掺氟碳层,创新性地制备了高性能硅/硅氧@F-C复合材料。Si/SiOx@F-C 电极表现出卓越的锂电性能,ICE 高达 79%,超过了 Si/SiOx@C 和 Si/SiOx 的 71% 和 43%。这些电极还显示出优异的速率性能,即使在 5000 mAg-1 的高电流密度下,也能保持 603 mAhg-1 的容量。值得注意的是,Si/SiOx@F-C 电极在 1000 mA g-1 条件下可在 1400 次循环中保持 829 mAh g-1 的高可逆容量,在 3000 mAg-1 条件下可在 2400 次循环中保持 588 mAhg-1,容量保持率高达 82.12%。对掺氟碳层的全面表征和分析表明,它在增强导电性和防止材料结构退化方面发挥了作用。涂层中丰富的氟元素显著提高了固体电解质界面(SEI)薄膜中的锂氟浓度,改善了界面兼容性和整体锂存储性能。这种方法既简单又有效,为硅基阳极在先进锂电池中的更广泛应用提供了美好的蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Synergistic Optimization of Buried Interface via Hydrochloric Acid for Efficient and Stable Perovskite Solar Cells Making Accessible and Attractive Porosities in Block Copolymer Nanofibers for Highly Permeable and Durable Air Filtration Prodrug Self‐Assemblies Based on Plant Volatile Aldehydes with Improved Stability and Antimicrobial Activity Against Plant Pathogens MOF‐Based Biomimetic Enzyme Microrobots for Efficient Detection of Total Antioxidant Capacity of Fruits and Vegetables Photoelectron Therapy Preventing the Formation of Bacterial Biofilm on Titanium Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1