Integrated Metabolomic and Transcriptomic Analysis Reveals Bioactive Compound Diversity in Organs of Saffron Flower.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2024-11-01 DOI:10.1111/ppl.14598
Jayram Bagri, Vikash Kumar Singh, Khushboo Gupta, Jeremy Dkhar, Aijaz Ahmad Wani, Mukesh Jain, Sneh Lata Singla-Pareek, Ashwani Pareek
{"title":"Integrated Metabolomic and Transcriptomic Analysis Reveals Bioactive Compound Diversity in Organs of Saffron Flower.","authors":"Jayram Bagri, Vikash Kumar Singh, Khushboo Gupta, Jeremy Dkhar, Aijaz Ahmad Wani, Mukesh Jain, Sneh Lata Singla-Pareek, Ashwani Pareek","doi":"10.1111/ppl.14598","DOIUrl":null,"url":null,"abstract":"<p><p>Saffron stigma, derived from Crocus sativus L., has long been revered in global traditional medicine and continues to hold significant market value. However, despite the extensive focus on saffron stigma, the therapeutic potential of other floral components remains underexplored, primarily due to limited insights into their complex molecular architectures and chemical diversity. To address this gap, we performed a comprehensive metabolomic analysis of various floral organs utilizing advanced analytical platforms, including GC-MS and UPLC-MS/MS. This in-depth profiling revealed a diverse array of 248 metabolites, encompassing amino acids, sugar derivatives, fatty acids, flavonoids, vitamins, polyamines, organic acids, and a broad spectrum of secondary metabolites. Distinct correlation patterns among these metabolites were identified through PCA and PLS-DA, highlighting unique metabolomic signatures inherent to each floral organ. We further integrated these metabolomic findings with our transcriptomic data, enabling a detailed understanding of the molecular and metabolic variations across different floral organs. The pronounced abundance of differentially expressed genes and metabolites in the stamen (424), leaf (345), tepal (196), stigma (177), and corm (133) underscores the intricate regulatory networks governing source-to-sink partitioning and dynamic metabolic processes. Notably, our study identified several bioactive compounds, including crocin, picrocrocin, crocetin, safranal, cannabielsoin, quercetin, prenylnaringenin, isorhamnetin, pelargonidin, kaempferol, and gallic acid, all of which exhibit potential therapeutic properties. In conclusion, this comprehensive analysis significantly enhances our understanding of the molecular mechanisms driving the biosynthesis of apocarotenoids, cannabinoids, anthocyanins, and flavonoids in saffron, thereby providing valuable insights and paving the way for future research in this area.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14598"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14598","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Saffron stigma, derived from Crocus sativus L., has long been revered in global traditional medicine and continues to hold significant market value. However, despite the extensive focus on saffron stigma, the therapeutic potential of other floral components remains underexplored, primarily due to limited insights into their complex molecular architectures and chemical diversity. To address this gap, we performed a comprehensive metabolomic analysis of various floral organs utilizing advanced analytical platforms, including GC-MS and UPLC-MS/MS. This in-depth profiling revealed a diverse array of 248 metabolites, encompassing amino acids, sugar derivatives, fatty acids, flavonoids, vitamins, polyamines, organic acids, and a broad spectrum of secondary metabolites. Distinct correlation patterns among these metabolites were identified through PCA and PLS-DA, highlighting unique metabolomic signatures inherent to each floral organ. We further integrated these metabolomic findings with our transcriptomic data, enabling a detailed understanding of the molecular and metabolic variations across different floral organs. The pronounced abundance of differentially expressed genes and metabolites in the stamen (424), leaf (345), tepal (196), stigma (177), and corm (133) underscores the intricate regulatory networks governing source-to-sink partitioning and dynamic metabolic processes. Notably, our study identified several bioactive compounds, including crocin, picrocrocin, crocetin, safranal, cannabielsoin, quercetin, prenylnaringenin, isorhamnetin, pelargonidin, kaempferol, and gallic acid, all of which exhibit potential therapeutic properties. In conclusion, this comprehensive analysis significantly enhances our understanding of the molecular mechanisms driving the biosynthesis of apocarotenoids, cannabinoids, anthocyanins, and flavonoids in saffron, thereby providing valuable insights and paving the way for future research in this area.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合代谢组学和转录组学分析揭示藏红花器官中生物活性化合物的多样性
藏红花柱头提取自番红花(Crocus sativus L.),长期以来在全球传统医学中备受推崇,并一直具有巨大的市场价值。然而,尽管藏红花柱头受到广泛关注,其他花卉成分的治疗潜力仍未得到充分开发,这主要是由于对其复杂的分子结构和化学多样性的了解有限。为了填补这一空白,我们利用先进的分析平台(包括 GC-MS 和 UPLC-MS/MS)对各种花器官进行了全面的代谢组学分析。这一深入分析揭示了 248 种代谢物的多样性,包括氨基酸、糖类衍生物、脂肪酸、类黄酮、维生素、多胺、有机酸和广泛的次生代谢物。通过 PCA 和 PLS-DA,确定了这些代谢物之间不同的相关模式,突出了每个花器官固有的独特代谢组学特征。我们进一步将这些代谢组研究结果与转录组数据相结合,从而详细了解了不同花器官之间的分子和代谢变化。雄蕊(424 个)、叶片(345 个)、花被片(196 个)、柱头(177 个)和球茎(133 个)中差异表达基因和代谢物的明显丰富程度突出表明了管理源-汇分配和动态代谢过程的复杂调控网络。值得注意的是,我们的研究发现了几种生物活性化合物,包括黄花苷、小黄苷、西红花苷、黄蓍苷、大麻素、槲皮素、前胡素、异鼠李素、佩拉贡苷、山奈酚和没食子酸,所有这些化合物都具有潜在的治疗作用。总之,这项综合分析大大加深了我们对藏红花中类胡萝卜素、大麻素、花青素和黄酮类化合物生物合成分子机制的理解,从而为这一领域的未来研究提供了宝贵的见解并铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
Differential impact of impaired steryl ester biosynthesis on the metabolome of tomato fruits and seeds. Regulatory effect of pipecolic acid (Pip) on the antioxidant system activity of Mesembryanthemum crystallinum plants exposed to bacterial treatment. Tree species and drought: Two mysterious long-standing counterparts. Meta-analysis of SnRK2 gene overexpression in response to drought and salt stress. R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1