TLR4-mediated chronic neuroinflammation has no effect on tangle pathology in a tauopathy mouse model.

IF 4.1 2区 医学 Q2 GERIATRICS & GERONTOLOGY Frontiers in Aging Neuroscience Pub Date : 2024-10-21 eCollection Date: 2024-01-01 DOI:10.3389/fnagi.2024.1468602
Neha Basheer, Muhammad Khalid Muhammadi, Carlos Leandro Freites, Martin Avila, Miraj Ud Din Momand, Natalia Hryntsova, Tomas Smolek, Stanislav Katina, Norbert Zilka
{"title":"TLR4-mediated chronic neuroinflammation has no effect on tangle pathology in a tauopathy mouse model.","authors":"Neha Basheer, Muhammad Khalid Muhammadi, Carlos Leandro Freites, Martin Avila, Miraj Ud Din Momand, Natalia Hryntsova, Tomas Smolek, Stanislav Katina, Norbert Zilka","doi":"10.3389/fnagi.2024.1468602","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease (AD) is marked by the accumulation of fibrillary aggregates composed of pathological tau protein. Although neuroinflammation is frequently observed in conjunction with tau pathology, current preclinical evidence does not sufficiently establish a direct causal role in tau tangle formation. This study aimed to evaluate whether chronic Toll-like receptor 4 (TLR4) stimulation, induced by a high dose of lipopolysaccharide (LPS, 5 mg/kg), exacerbates neurofibrillary tangle (NFT) pathology in a transgenic mouse model of tauopathy that expresses human truncated 151-391/3R tau, an early feature of sporadic AD.</p><p><strong>Methods: </strong>We utilized a transgenic mouse model of tauopathy subjected to chronic TLR4 stimulation via weekly intraperitoneal injections of LPS over nine consecutive weeks. Neurofibrillary tangle formation, microglial activation, and tau hyperphosphorylation in the brainstem and hippocampus were assessed through immunohistochemistry, immunofluorescence, and detailed morphometric analysis of microglia.</p><p><strong>Results: </strong>Chronic LPS treatment led to a significant increase in the number of Iba-1<sup>+</sup> microglia in the LPS-treated group compared to the sham group (<i>p</i> < 0.0001). Notably, there was a 1.5- to 1.7-fold increase in microglia per tangle-bearing neuron in the LPS-treated group. These microglia exhibited a reactive yet exhausted phenotype, characterized by a significant reduction in cell area (<i>p</i> < 0.0001) without significant changes in other morphometric parameters, such as perimeter, circumference, solidity, aspect ratio, or arborization degree. Despite extensive microglial activation, there was no observed reduction in tau hyperphosphorylation or a decrease in tangle formation in the brainstem, where pathology predominantly develops in this model.</p><p><strong>Discussion: </strong>These findings suggest that chronic TLR4 stimulation in tau-transgenic mice results in significant microglial activation but does not influence tau tangle formation. This underscores the complexity of the relationship between neuroinflammation and tau pathology, indicating that additional mechanisms may be required for neuroinflammation to directly contribute to tau tangle formation.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"16 ","pages":"1468602"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2024.1468602","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Alzheimer's disease (AD) is marked by the accumulation of fibrillary aggregates composed of pathological tau protein. Although neuroinflammation is frequently observed in conjunction with tau pathology, current preclinical evidence does not sufficiently establish a direct causal role in tau tangle formation. This study aimed to evaluate whether chronic Toll-like receptor 4 (TLR4) stimulation, induced by a high dose of lipopolysaccharide (LPS, 5 mg/kg), exacerbates neurofibrillary tangle (NFT) pathology in a transgenic mouse model of tauopathy that expresses human truncated 151-391/3R tau, an early feature of sporadic AD.

Methods: We utilized a transgenic mouse model of tauopathy subjected to chronic TLR4 stimulation via weekly intraperitoneal injections of LPS over nine consecutive weeks. Neurofibrillary tangle formation, microglial activation, and tau hyperphosphorylation in the brainstem and hippocampus were assessed through immunohistochemistry, immunofluorescence, and detailed morphometric analysis of microglia.

Results: Chronic LPS treatment led to a significant increase in the number of Iba-1+ microglia in the LPS-treated group compared to the sham group (p < 0.0001). Notably, there was a 1.5- to 1.7-fold increase in microglia per tangle-bearing neuron in the LPS-treated group. These microglia exhibited a reactive yet exhausted phenotype, characterized by a significant reduction in cell area (p < 0.0001) without significant changes in other morphometric parameters, such as perimeter, circumference, solidity, aspect ratio, or arborization degree. Despite extensive microglial activation, there was no observed reduction in tau hyperphosphorylation or a decrease in tangle formation in the brainstem, where pathology predominantly develops in this model.

Discussion: These findings suggest that chronic TLR4 stimulation in tau-transgenic mice results in significant microglial activation but does not influence tau tangle formation. This underscores the complexity of the relationship between neuroinflammation and tau pathology, indicating that additional mechanisms may be required for neuroinflammation to directly contribute to tau tangle formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TLR4 介导的慢性神经炎症对牛磺酸病小鼠模型的纠结病理学没有影响。
简介阿尔茨海默病(AD)的特征是由病理性 tau 蛋白组成的纤维状聚集体的累积。虽然神经炎症经常与 tau 病理学同时出现,但目前的临床前证据还不足以确定 tau 纠结形成的直接因果关系。本研究旨在评估高剂量脂多糖(LPS,5 mg/kg)诱导的慢性Toll样受体4(TLR4)刺激是否会加重表达人类截短的151-391/3R tau(散发性AD的早期特征)的tau病转基因小鼠的神经纤维缠结(NFT)病理学:方法:我们利用一种tauopathy转基因小鼠模型,通过连续九周每周腹腔注射LPS对TLR4进行慢性刺激。通过免疫组化、免疫荧光和小胶质细胞的详细形态分析评估了脑干和海马的神经纤维缠结形成、小胶质细胞活化和tau高磷酸化:结果:与假组相比,慢性 LPS 处理组的 Iba-1+ 小胶质细胞数量显著增加(p p 讨论):这些研究结果表明,TLR4 对 tau 转基因小鼠的慢性刺激会导致显著的小胶质细胞活化,但不会影响 tau 纠结的形成。这凸显了神经炎症与 tau 病理学之间关系的复杂性,表明神经炎症直接导致 tau 纠结的形成可能还需要其他机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Aging Neuroscience
Frontiers in Aging Neuroscience GERIATRICS & GERONTOLOGY-NEUROSCIENCES
CiteScore
6.30
自引率
8.30%
发文量
1426
期刊介绍: Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Somatosensory integration in robot-assisted motor restoration post-stroke. Clinical and cognitive features associated with psychosis in Parkinson's disease: a longitudinal study. Association of serum klotho with cognitive function among individuals with nonalcoholic fatty liver disease. Causal association between Parkinson's disease and cancer: a bidirectional Mendelian randomization study. Network-based statistics reveals an enhanced subnetwork in prefrontal cortex in mild cognitive impairment: a functional near-infrared spectroscopy study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1