Shu-Hui Lin, Yun-Jung Tsai, Tzu-Cheng Su, Shih-Lun Lai, Chun-Ping Jen
{"title":"Separation of Lung Cancer Cells From Mixed Cell Samples Using Aptamer-Modified Magnetic Beads and Permalloy Micromagnets.","authors":"Shu-Hui Lin, Yun-Jung Tsai, Tzu-Cheng Su, Shih-Lun Lai, Chun-Ping Jen","doi":"10.1002/elps.202400147","DOIUrl":null,"url":null,"abstract":"<p><p>This study involved the design and fabrication of a microfluidic chip integrated with permalloy micromagnets. The device was used with aptamer-modified magnetic beads (MBs) of various sizes to successfully separate lung cancer cells from a mixture of other cells. The overall separation efficiency was evaluated based on the ratios of cells in the different outlets and inlets of the chip. The results showed efficiencies ranging from 43.4% to 50.2% for MB sizes between 1.36 and 4.50 µm. Interestingly, efficiency slightly decreased as the size of the MBs increased, contrary to predictions. Further examination revealed that larger MBs exerted gravitational force on the cell-bound MBs at low flow rates, causing the targets to settle before reaching the main microchannel region. This was attributed to fluidic resistance caused by a size mismatch between the inlet tube and the microfluidic conduit. An increase in cell accumulation at the inlet was observed with larger MB sizes due to gravity. Therefore, the definition of effective separation efficiency was revised to exclude the effect of cell accumulation at the inlet. Effective separation efficiencies were found to be 71.6%, 76.4%, and 79.4% for MB sizes of 1.36, 3.00, and 4.50 µm, respectively. The study concluded that larger MBs interacted more with the magnetic force, resulting in better separation. However, cells with smaller MBs were more likely to evade the magnetic force. The investigation provides valuable insights into isolating lung cancer cells using this method, with the potential for clinical application in cancer diagnosis and treatment.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400147","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study involved the design and fabrication of a microfluidic chip integrated with permalloy micromagnets. The device was used with aptamer-modified magnetic beads (MBs) of various sizes to successfully separate lung cancer cells from a mixture of other cells. The overall separation efficiency was evaluated based on the ratios of cells in the different outlets and inlets of the chip. The results showed efficiencies ranging from 43.4% to 50.2% for MB sizes between 1.36 and 4.50 µm. Interestingly, efficiency slightly decreased as the size of the MBs increased, contrary to predictions. Further examination revealed that larger MBs exerted gravitational force on the cell-bound MBs at low flow rates, causing the targets to settle before reaching the main microchannel region. This was attributed to fluidic resistance caused by a size mismatch between the inlet tube and the microfluidic conduit. An increase in cell accumulation at the inlet was observed with larger MB sizes due to gravity. Therefore, the definition of effective separation efficiency was revised to exclude the effect of cell accumulation at the inlet. Effective separation efficiencies were found to be 71.6%, 76.4%, and 79.4% for MB sizes of 1.36, 3.00, and 4.50 µm, respectively. The study concluded that larger MBs interacted more with the magnetic force, resulting in better separation. However, cells with smaller MBs were more likely to evade the magnetic force. The investigation provides valuable insights into isolating lung cancer cells using this method, with the potential for clinical application in cancer diagnosis and treatment.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.