Binocular integration of chromatic and luminance signals.

IF 2 4区 心理学 Q2 OPHTHALMOLOGY Journal of Vision Pub Date : 2024-11-04 DOI:10.1167/jov.24.12.7
Daniel H Baker, Kirralise J Hansford, Federico G Segala, Anisa Y Morsi, Rowan J Huxley, Joel T Martin, Maya Rockman, Alex R Wade
{"title":"Binocular integration of chromatic and luminance signals.","authors":"Daniel H Baker, Kirralise J Hansford, Federico G Segala, Anisa Y Morsi, Rowan J Huxley, Joel T Martin, Maya Rockman, Alex R Wade","doi":"10.1167/jov.24.12.7","DOIUrl":null,"url":null,"abstract":"<p><p>Much progress has been made in understanding how the brain combines signals from the two eyes. However, most of this work has involved achromatic (black and white) stimuli, and it is not clear if the same processes apply in color-sensitive pathways. In our first experiment, we measured contrast discrimination (\"dipper\") functions for four key ocular configurations (monocular, binocular, half-binocular, and dichoptic), for achromatic, isoluminant L-M and isoluminant S-(L+M) sine-wave grating stimuli (L: long-, M: medium-, S: short-wavelength). We find a similar pattern of results across stimuli, implying equivalently strong interocular suppression within each pathway. Our second experiment measured dichoptic masking within and between pathways using the method of constant stimuli. Masking was strongest within-pathway and weakest between S-(L+M) and achromatic mechanisms. Finally, we repeated the dipper experiment using temporal luminance modulations, which produced slightly weaker interocular suppression than for spatially modulated stimuli. We interpret our results in the context of a contemporary two-stage model of binocular contrast gain control, implemented here using a hierarchical Bayesian framework. Posterior distributions of the weight of interocular suppression overlapped with a value of 1 for all dipper data sets, and the model captured well the pattern of thresholds from all three experiments.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556357/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.12.7","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Much progress has been made in understanding how the brain combines signals from the two eyes. However, most of this work has involved achromatic (black and white) stimuli, and it is not clear if the same processes apply in color-sensitive pathways. In our first experiment, we measured contrast discrimination ("dipper") functions for four key ocular configurations (monocular, binocular, half-binocular, and dichoptic), for achromatic, isoluminant L-M and isoluminant S-(L+M) sine-wave grating stimuli (L: long-, M: medium-, S: short-wavelength). We find a similar pattern of results across stimuli, implying equivalently strong interocular suppression within each pathway. Our second experiment measured dichoptic masking within and between pathways using the method of constant stimuli. Masking was strongest within-pathway and weakest between S-(L+M) and achromatic mechanisms. Finally, we repeated the dipper experiment using temporal luminance modulations, which produced slightly weaker interocular suppression than for spatially modulated stimuli. We interpret our results in the context of a contemporary two-stage model of binocular contrast gain control, implemented here using a hierarchical Bayesian framework. Posterior distributions of the weight of interocular suppression overlapped with a value of 1 for all dipper data sets, and the model captured well the pattern of thresholds from all three experiments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
色度和亮度信号的双眼整合。
在了解大脑如何将两只眼睛的信号结合起来方面,已经取得了很大进展。然而,这些研究大多涉及消色差(黑白)刺激,尚不清楚对颜色敏感的通路是否也有同样的过程。在我们的第一个实验中,我们测量了四种主要眼球构型(单眼、双眼、半双眼和二视眼)的对比分辨("北斗七星")功能,以及消色差、隔离发光的 L-M 和隔离发光的 S-(L+M)正弦波光栅刺激(L:长波长,M:中波长,S:短波长)的对比分辨("北斗七星")功能。我们发现不同刺激下的结果模式相似,这意味着在每种通路中眼间抑制的强度相当。我们的第二个实验使用恒定刺激法测量了通路内部和通路之间的二色遮蔽。通路内部的遮蔽最强,S-(L+M)和消色差机制之间的遮蔽最弱。最后,我们使用时间亮度调制重复了北斗七星实验,与空间调制刺激相比,该实验产生的眼间抑制稍弱。我们在当代双目对比度增益控制两阶段模型的背景下解释我们的结果,该模型在此使用分层贝叶斯框架实现。在所有北斗七星数据集中,眼间抑制权重的后验分布都与 1 值重叠,而且该模型很好地捕捉到了所有三个实验中的阈值模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Vision
Journal of Vision 医学-眼科学
CiteScore
2.90
自引率
5.60%
发文量
218
审稿时长
3-6 weeks
期刊介绍: Exploring all aspects of biological visual function, including spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.
期刊最新文献
Individual differences reveal similarities in serial dependence effects across perceptual tasks, but not to oculomotor tasks. Investigating the relationship between subjective perception and unconscious feature integration. Binocular integration of chromatic and luminance signals. Deep convolutional neural networks are sensitive to face configuration. How the window of visibility varies around polar angle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1