Comprehensive Genome Analysis of Colistin-Only-Sensitive KPC-2 and NDM1-1-Coproducing Klebsiella pneumoniae ST11 and Acinetobacter baumannii ST2 From a Critically Ill Patient With COVID-19 in Saudi Arabia: Whole Genome Sequencing (WGS) of K. pneumoniae ST11 and A. baumannii ST2.
{"title":"Comprehensive Genome Analysis of Colistin-Only-Sensitive KPC-2 and NDM1-1-Coproducing <i>Klebsiella pneumoniae</i> ST11 and <i>Acinetobacter baumannii</i> ST2 From a Critically Ill Patient With COVID-19 in Saudi Arabia: Whole Genome Sequencing (WGS) of <i>K. pneumoniae</i> ST11 and <i>A. baumannii</i> ST2.","authors":"Ibrahim A Al-Zahrani, Thamer M Brek","doi":"10.1155/2024/9233075","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has intensified the issue of multidrug-resistant (MDR) infections, particularly in intensive care units (ICUs). This study documents the first known case of coinfection with two extensively drug-resistant (XDR) bacterial isolates in a critically ill patient with COVID-19 in Saudi Arabia. Both XDR isolates were recovered from blood and were resistant to all tested antimicrobial agents except colistin. Whole genome sequencing (WGS) revealed that the <i>K. pneumoniae</i> isolate KP-JZ107 had sequence type 11 (ST11) and core genome MLST (cgMLST 304742), while the <i>A. baumannii</i> isolate AB-JZ67 had ST2 and cgMLST 785. KP-JZ107 was found to possess the virulence plasmid KpVP-type-1, carbapenemase genes <i>bla</i> <sub><i>NDM</i></sub> and <i>bla</i> <sub><i>KPC</i></sub> , and numerous antimicrobial-resistant genes (ARGs). The AB-JZ67 isolate had several biofilm-related genes, including biofilm-associated protein (BAP), csuE, and pgaB, and multiple ARGs, including <i>bla</i> <sub><i>ADC</i>-25</sub>, <i>bla</i> <sub><i>OXA</i>-23</sub>, and <i>bla</i> <sub><i>OXA</i>-66</sub>. Our findings suggest that the coexistence of KP-JZ107 and AB-JZ67 isolates may indicate their widespread presence in ICUs, requiring comprehensive surveillance studies across all hospitals.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2024 ","pages":"9233075"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/9233075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has intensified the issue of multidrug-resistant (MDR) infections, particularly in intensive care units (ICUs). This study documents the first known case of coinfection with two extensively drug-resistant (XDR) bacterial isolates in a critically ill patient with COVID-19 in Saudi Arabia. Both XDR isolates were recovered from blood and were resistant to all tested antimicrobial agents except colistin. Whole genome sequencing (WGS) revealed that the K. pneumoniae isolate KP-JZ107 had sequence type 11 (ST11) and core genome MLST (cgMLST 304742), while the A. baumannii isolate AB-JZ67 had ST2 and cgMLST 785. KP-JZ107 was found to possess the virulence plasmid KpVP-type-1, carbapenemase genes blaNDM and blaKPC , and numerous antimicrobial-resistant genes (ARGs). The AB-JZ67 isolate had several biofilm-related genes, including biofilm-associated protein (BAP), csuE, and pgaB, and multiple ARGs, including blaADC-25, blaOXA-23, and blaOXA-66. Our findings suggest that the coexistence of KP-JZ107 and AB-JZ67 isolates may indicate their widespread presence in ICUs, requiring comprehensive surveillance studies across all hospitals.
期刊介绍:
International Journal of Microbiology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies on microorganisms and their interaction with hosts and the environment. The journal covers all microbes, including bacteria, fungi, viruses, archaea, and protozoa. Basic science will be considered, as well as medical and applied research.