{"title":"Simultaneous assessment of cerebral glucose and oxygen metabolism and perfusion in rats using interleaved deuterium (<sup>2</sup>H) and oxygen-17 (<sup>17</sup>O) MRS.","authors":"Guangle Zhang, Parker Jenkins, Wei Zhu, Wei Chen, Xiao-Hong Zhu","doi":"10.1002/nbm.5284","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral glucose and oxygen metabolism and blood perfusion play key roles in neuroenergetics and oxidative phosphorylation to produce adenosine triphosphate (ATP) energy molecules in supporting cellular activity and brain function. Their impairments have been linked to numerous brain disorders. This study aimed to develop an in vivo magnetic resonance spectroscopy (MRS) method capable of simultaneously assessing and quantifying the major cerebral metabolic rates of glucose (CMR<sub>Glc</sub>) and oxygen (CMRO<sub>2</sub>) consumption, lactate formation (CMR<sub>Lac</sub>), and tricarboxylic acid (TCA) cycle (V<sub>TCA</sub>); cerebral blood flow (CBF); and oxygen extraction fraction (OEF) via a single dynamic MRS measurement using an interleaved deuterium (<sup>2</sup>H) and oxygen-17 (<sup>17</sup>O) MRS approach. We introduced a single-loop multifrequency radio-frequency (RF) surface coil that can be used to acquire proton (<sup>1</sup>H) magnetic resonance imaging (MRI) or interleaved low-γ X-nuclei <sup>2</sup>H and <sup>17</sup>O MRS. By combining this RF coil with a modified MRS pulse sequence, <sup>17</sup>O-isotope-labeled oxygen gas inhalation, and intravenous <sup>2</sup>H-isotope-labeled glucose administration, we demonstrate for the first time the feasibility of simultaneously and quantitatively measuring six important physiological parameters, CMR<sub>Glc</sub>, CMRO<sub>2</sub>, CMR<sub>Lac</sub>, V<sub>TCA</sub>, CBF, and OEF, in rat brains at 16.4 T. The interleaved <sup>2</sup>H-<sup>17</sup>O MRS technique should be readily adapted to image and study cerebral energy metabolism and perfusion in healthy and diseased brains.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5284"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5284","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebral glucose and oxygen metabolism and blood perfusion play key roles in neuroenergetics and oxidative phosphorylation to produce adenosine triphosphate (ATP) energy molecules in supporting cellular activity and brain function. Their impairments have been linked to numerous brain disorders. This study aimed to develop an in vivo magnetic resonance spectroscopy (MRS) method capable of simultaneously assessing and quantifying the major cerebral metabolic rates of glucose (CMRGlc) and oxygen (CMRO2) consumption, lactate formation (CMRLac), and tricarboxylic acid (TCA) cycle (VTCA); cerebral blood flow (CBF); and oxygen extraction fraction (OEF) via a single dynamic MRS measurement using an interleaved deuterium (2H) and oxygen-17 (17O) MRS approach. We introduced a single-loop multifrequency radio-frequency (RF) surface coil that can be used to acquire proton (1H) magnetic resonance imaging (MRI) or interleaved low-γ X-nuclei 2H and 17O MRS. By combining this RF coil with a modified MRS pulse sequence, 17O-isotope-labeled oxygen gas inhalation, and intravenous 2H-isotope-labeled glucose administration, we demonstrate for the first time the feasibility of simultaneously and quantitatively measuring six important physiological parameters, CMRGlc, CMRO2, CMRLac, VTCA, CBF, and OEF, in rat brains at 16.4 T. The interleaved 2H-17O MRS technique should be readily adapted to image and study cerebral energy metabolism and perfusion in healthy and diseased brains.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.