Mucen Yu, Jielin Xu, Ranjan Dutta, Bruce Trapp, Andrew A Pieper, Feixiong Cheng
{"title":"Network medicine informed multiomics integration identifies drug targets and repurposable medicines for Amyotrophic Lateral Sclerosis.","authors":"Mucen Yu, Jielin Xu, Ranjan Dutta, Bruce Trapp, Andrew A Pieper, Feixiong Cheng","doi":"10.1038/s41540-024-00449-y","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. We developed a network medicine methodology via integrating human brain multi-omics data to prioritize drug targets and repurposable treatments for ALS. We leveraged non-coding ALS loci effects from genome-wide associated studies (GWAS) on human brain expression quantitative trait loci (QTL) (eQTL), protein QTL (pQTL), splicing QTL (sQTL), methylation QTL (meQTL), and histone acetylation QTL (haQTL). Using a network-based deep learning framework, we identified 105 putative ALS-associated genes enriched in known ALS pathobiological pathways. Applying network proximity analysis of predicted ALS-associated genes and drug-target networks under the human protein-protein interactome (PPI) model, we identified potential repurposable drugs (i.e., Diazoxide and Gefitinib) for ALS. Subsequent validation established preclinical evidence for top-prioritized drugs. In summary, we presented a network-based multi-omics framework to identify drug targets and repurposable treatments for ALS and other neurodegenerative disease if broadly applied.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00449-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. We developed a network medicine methodology via integrating human brain multi-omics data to prioritize drug targets and repurposable treatments for ALS. We leveraged non-coding ALS loci effects from genome-wide associated studies (GWAS) on human brain expression quantitative trait loci (QTL) (eQTL), protein QTL (pQTL), splicing QTL (sQTL), methylation QTL (meQTL), and histone acetylation QTL (haQTL). Using a network-based deep learning framework, we identified 105 putative ALS-associated genes enriched in known ALS pathobiological pathways. Applying network proximity analysis of predicted ALS-associated genes and drug-target networks under the human protein-protein interactome (PPI) model, we identified potential repurposable drugs (i.e., Diazoxide and Gefitinib) for ALS. Subsequent validation established preclinical evidence for top-prioritized drugs. In summary, we presented a network-based multi-omics framework to identify drug targets and repurposable treatments for ALS and other neurodegenerative disease if broadly applied.
肌萎缩性脊髓侧索硬化症(ALS)是一种毁灭性的、极其复杂的神经退行性疾病,缺乏有效的治疗方法。我们开发了一种网络医学方法,通过整合人脑多组学数据来优先确定 ALS 的药物靶点和可再利用的治疗方法。我们利用全基因组关联研究(GWAS)中关于人脑表达定量性状位点(QTL)(eQTL)、蛋白质定量性状位点(pQTL)、剪接定量性状位点(sQTL)、甲基化定量性状位点(meQTL)和组蛋白乙酰化定量性状位点(haQTL)的非编码 ALS 位点效应。利用基于网络的深度学习框架,我们在已知的 ALS 病理生物学通路中发现了 105 个假定的 ALS 相关基因。通过对预测的 ALS 相关基因和人类蛋白质-蛋白质相互作用组(PPI)模型下的药物-靶点网络进行网络邻近性分析,我们确定了治疗 ALS 的潜在可再利用药物(即 Diazoxide 和 Gefitinib)。随后的验证为优先药物提供了临床前证据。总之,我们提出了一个基于网络的多组学框架,以确定药物靶点,并在广泛应用的情况下确定可再利用的治疗 ALS 和其他神经退行性疾病的方法。
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.