Thiya Mukherjee, Shrikaar Kambhampati, Stewart A Morley, Timothy P Durrett, Doug K Allen
{"title":"Metabolic Flux Analysis to Increase Oil in Seeds.","authors":"Thiya Mukherjee, Shrikaar Kambhampati, Stewart A Morley, Timothy P Durrett, Doug K Allen","doi":"10.1093/plphys/kiae595","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring an adequate food supply and enough energy to sustainably support future global populations will require enhanced productivity from plants. Oilseeds can help address these needs; but the fatty acid composition of seed oils is not always optimal, and higher yields are required to meet growing demands. Quantitative approaches including metabolic flux analysis can provide insights on unexpected metabolism (i.e., when metabolism is different than in a textbook) and can be used to guide engineering efforts; however, as metabolism is context-specific, it changes with tissue type, local environment, and development. This review describes recent insights from metabolic flux analysis in oilseeds and indicates engineering opportunities based on emerging topics and developing technologies that will aid quantitative understanding of metabolism and enable efforts to produce more oil. We also suggest that investigating the key regulators of fatty acid biosynthesis, such as transcription factors, and exploring metabolic signals like phytohormones in greater depth through flux analysis, could open new pathways for advancing genetic engineering and breeding strategies to enhance oil crop production.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae595","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring an adequate food supply and enough energy to sustainably support future global populations will require enhanced productivity from plants. Oilseeds can help address these needs; but the fatty acid composition of seed oils is not always optimal, and higher yields are required to meet growing demands. Quantitative approaches including metabolic flux analysis can provide insights on unexpected metabolism (i.e., when metabolism is different than in a textbook) and can be used to guide engineering efforts; however, as metabolism is context-specific, it changes with tissue type, local environment, and development. This review describes recent insights from metabolic flux analysis in oilseeds and indicates engineering opportunities based on emerging topics and developing technologies that will aid quantitative understanding of metabolism and enable efforts to produce more oil. We also suggest that investigating the key regulators of fatty acid biosynthesis, such as transcription factors, and exploring metabolic signals like phytohormones in greater depth through flux analysis, could open new pathways for advancing genetic engineering and breeding strategies to enhance oil crop production.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.