MYB168 and WRKY20 transcription factors synergistically regulate lignin monomer synthesis during potato tuber wound healing.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-11-05 DOI:10.1093/plphys/kiae573
Ruirui Yang, Qihui Wang, Ying Wang, Xuejiao Zhang, Xiaoyuan Zheng, Yongcai Li, Dov Prusky, Yang Bi, Ye Han
{"title":"MYB168 and WRKY20 transcription factors synergistically regulate lignin monomer synthesis during potato tuber wound healing.","authors":"Ruirui Yang, Qihui Wang, Ying Wang, Xuejiao Zhang, Xiaoyuan Zheng, Yongcai Li, Dov Prusky, Yang Bi, Ye Han","doi":"10.1093/plphys/kiae573","DOIUrl":null,"url":null,"abstract":"<p><p>Lignin is a critical component of the closing layer of the potato (Solanum tuberosum L.) tuber during healing; however, the molecular mechanism of its formation remains poorly understood. To elucidate the molecular mechanism of tuber healing, we screened the genes encoding transcription factors that regulate lignin synthesis(StMYB24/49/105/144/168, StWRKY19/20/22/23/34) and the key genes involved in lignin monomer synthesis (PHENYLALANINE AMMONIA LYASE 5 (StPAL5) and CINNAMYL ALCOHOL DEHYDROGENASE 14 (StCAD14)) for induced expression after wounding using transcriptome data. DLR, Y1H, EMSA, and ChIP-qPCR assays revealed that StMYB168 could bind directly to the StPAL5 and StCAD14 promoters to activate their expression and that StWRKY20 enhanced this regulation with a synergistic effect. Y2H, BiFC, and Co-IP assays showed that StMYB168 interacted with StWRKY20 to form a MYB-WRKY complex. Furthermore, transient overexpression of StMYB168 and StWRKY20 in Nicotiana benthamiana leaves upregulated the expression of NbPAL and NbCAD10 and promoted lignin accumulation in the leaves. In addition, overexpression of StWRKY20 and StMYB168 together resulted in higher expression levels of NbPAL and NbCAD10 and higher levels of lignin monomer and total lignin. In contrast, silencing of StMYB168 and StWRKY20 in potato significantly reduced the lignin content of wounded tubers. In conclusion, StMYB168 and StWRKY20 are important regulators of lignin biosynthesis in potato tubers during healing and can positively regulate lignin biosynthesis by forming a complex. The elucidation of this regulatory module provides information on the regulatory mechanism of lignin monomer synthesis in wounded tubers at the transcriptional level.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae573","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin is a critical component of the closing layer of the potato (Solanum tuberosum L.) tuber during healing; however, the molecular mechanism of its formation remains poorly understood. To elucidate the molecular mechanism of tuber healing, we screened the genes encoding transcription factors that regulate lignin synthesis(StMYB24/49/105/144/168, StWRKY19/20/22/23/34) and the key genes involved in lignin monomer synthesis (PHENYLALANINE AMMONIA LYASE 5 (StPAL5) and CINNAMYL ALCOHOL DEHYDROGENASE 14 (StCAD14)) for induced expression after wounding using transcriptome data. DLR, Y1H, EMSA, and ChIP-qPCR assays revealed that StMYB168 could bind directly to the StPAL5 and StCAD14 promoters to activate their expression and that StWRKY20 enhanced this regulation with a synergistic effect. Y2H, BiFC, and Co-IP assays showed that StMYB168 interacted with StWRKY20 to form a MYB-WRKY complex. Furthermore, transient overexpression of StMYB168 and StWRKY20 in Nicotiana benthamiana leaves upregulated the expression of NbPAL and NbCAD10 and promoted lignin accumulation in the leaves. In addition, overexpression of StWRKY20 and StMYB168 together resulted in higher expression levels of NbPAL and NbCAD10 and higher levels of lignin monomer and total lignin. In contrast, silencing of StMYB168 and StWRKY20 in potato significantly reduced the lignin content of wounded tubers. In conclusion, StMYB168 and StWRKY20 are important regulators of lignin biosynthesis in potato tubers during healing and can positively regulate lignin biosynthesis by forming a complex. The elucidation of this regulatory module provides information on the regulatory mechanism of lignin monomer synthesis in wounded tubers at the transcriptional level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MYB168 和 WRKY20 转录因子协同调控马铃薯块茎伤口愈合过程中木质素单体的合成。
木质素是马铃薯(Solanum tuberosum L.)块茎愈合过程中闭合层的重要组成部分;然而,人们对木质素形成的分子机制仍然知之甚少。为了阐明块茎愈伤的分子机制,我们筛选了编码调控木质素合成的转录因子的基因(StMYB24/49/105/144/168、StWRKY19/20/22/23/34)和参与木质素单体合成的关键基因(PHENYLALANINE AMMONIA LYASE 5 (StPAL5)和CINNAMYL ALCOHOL DEHYDROGENASE 14 (StCAD14))的表达。DLR、Y1H、EMSA 和 ChIP-qPCR 分析表明,StMYB168 可直接与 StPAL5 和 StCAD14 启动子结合以激活它们的表达,而 StWRKY20 则以协同效应加强了这种调控。Y2H、BiFC和Co-IP检测表明,StMYB168与StWRKY20相互作用,形成MYB-WRKY复合物。此外,在烟草叶片中瞬时过表达 StMYB168 和 StWRKY20 能上调 NbPAL 和 NbCAD10 的表达,促进叶片中木质素的积累。此外,过表达 StWRKY20 和 StMYB168 会导致更高的 NbPAL 和 NbCAD10 表达水平以及更高的木质素单体和总木质素水平。相反,在马铃薯中沉默 StMYB168 和 StWRKY20 会显著降低受伤块茎的木质素含量。总之,StMYB168 和 StWRKY20 是马铃薯块茎愈伤过程中木质素生物合成的重要调控因子,可通过形成复合物对木质素生物合成进行正向调控。该调控模块的阐明为从转录水平研究受伤块茎木质素单体合成的调控机制提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Histone modification H3K27me3 is essential during chilling-induced flowering in Litchi chinensis Packaging “vegetable oils”: Insights into plant lipid droplet proteins CELL DIVISION CYCLE 5 controls floral transition by regulating flowering gene transcription and splicing in Arabidopsis. Cyclic and pseudo-cyclic electron pathways play antagonistic roles during nitrogen deficiency in Chlamydomonas reinhardtii. The E3 ubiquitin ligase COP1 and transcription factors HY5 and RHD6 integrate light signaling and root hair development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1